• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Diferencial.

Equação Diferencial.

Mensagempor Higor » Seg Fev 21, 2011 13:12

Boa Tarde Galera.

Estou com uma ED simples mas estou com uma duvida.

\frac{dy}{dx}= \frac{y}{x}

no caso troco o dx de lugar com o y e temos:

\frac{dy}{y}= \frac{dx}{x}

passo a integral dos dois lados

\int_{}^{} \frac{dy}{y} = \int_{}^{} \frac{dx}{x}

ai ficara

ln (y) = ln (x) + C

ai passo o e dos dois lados:

e elevado a ln y = e elevado a ln de x + o C

nesse caso ficaria

y = x + C

como C é constante posso substituir por A

y= x + A

só que ai que vem minha duvida, a reposta correta
é y= x.A

alguem pode me explicar o porque ??? obrigado
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Equação Diferencial.

Mensagempor Molina » Seg Fev 21, 2011 13:53

Boa tarde, Higor.

Você fez certo até aqui:

Higor escreveu:e elevado a ln y = e elevado a ln de x + o C

nesse caso ficaria


Veja a continuação:

e^{lny} = e^{lnx + C}

Pela propriedade de exponencial, temos que:

z^a*z^b=z^{a+b}

Foi isso que você se confundiu no lado direito. Com isso:

y = e^{ln  x} * e^{C}

y = x * e^{C}

Tomando e^{C}=A concluimos que:

y = x * A


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Equação Diferencial.

Mensagempor Higor » Seg Fev 21, 2011 14:25

Molina muito obrigado pela ajuda.

Meu professor disse da seguinte maneira:

antes de fazer como voce fez :

e^ln y = e^ln(x+C)

ele sugeriu que

fosse feito assim:

e^ln y = e^ln x + ln e^C

ai como vc disse e ele tambem

multiplicação de base igual soma os expoentes e repete a base
e nesse caso
foi multiplicado os expoentes

ai chegou nessa resposta.

Essa passagem que ele faz antes chamando o C de ln e^C esta correto ???
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Equação Diferencial.

Mensagempor Molina » Seg Fev 21, 2011 14:39

Você está dizendo que daqui:

ln (y) = ln (x) + C

ele veio para cá:


e^{ln (y)} = e^{ln (x)} + e^{C}

???

Se for isso, essa passagem está errada, pois para usar a propriedade exponencial, precisa haver uma multiplicação (e não uma soma, como há ali). Desta forma como está colocado aqui em cima, vamos chegar no resultado que você chegou primeiramente, onde o A está somando o x, e não multiplicando, como é a resposta correta.

Percebeu a diferença? O correto é elevar os dois lados da igualdade a base e e desta forma, pela propriedade exponencial o lado direito fica com uma soma de expoentes que posteriormente abrimos na multiplicação das bases:

ln (y) = ln (x) + C

e^{ln (y)} = e^{ln (x) + C}

e^{ln (y)} = e^{ln (x)} * e^C

y = x*A

Caso não tenha ficado claro, avise.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Equação Diferencial.

Mensagempor Higor » Seg Fev 21, 2011 14:46

Molina mais uma vez obrigado.

Ficou muito claro, entendi certinho..

:y:
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59