• Anúncio Global
    Respostas
    Exibições
    Última mensagem

expressão

expressão

Mensagempor jose henrique » Qua Fev 16, 2011 18:16

considere a expressão: \frac{\frac{{x}^{2}-4}{{x}^{3}-8}}{\frac{{x}^{2}-x}{{x}^{3}+{x}^{2}+4x}}
diga para quais valores de x é possível calcular essa expressão. Responda na forma de intervalos.
Simplifique a expressão de forma a obter uma expressão com um polinômio no numerador e um polinômio no denominador.
iguale a expressão dada à 2x e resolva a equação encontrada. para resolver essa equação você pode usar a expressão simplificada.

o primeiro item eu não consegui responder, pois a equação {x}^{2}+2x+4 não possui solução em R.
o segundo item a minha resposta deu \frac{x+2}{x-1}
e o terceiro item pedia para eu igualar o item anterior a 2x.
\frac{x+2}{x-1}=2x deu S={-1/2, 2}


alguém poderia me ajudar nesta questão.
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: expressão

Mensagempor Renato_RJ » Qua Fev 16, 2011 20:03

Mas a questão te limita no domínio dos inteiros ??
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: expressão

Mensagempor jose henrique » Qui Fev 17, 2011 16:31

o enunciado da questão está do mesmo jeito que eu descrevi na postagem, e agora com a sua interpolação ficou a dúvida.
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: expressão

Mensagempor DanielFerreira » Qui Fev 17, 2011 17:49

José,
poderia confirmar x³ + x² + 4x ?!
não é x³ + 2x² + 4x????
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: expressão

Mensagempor jose henrique » Qui Fev 17, 2011 17:53

correto
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: expressão

Mensagempor DanielFerreira » Qui Fev 17, 2011 18:04

então...
x² - 4 = (x + 2)(x - 2)

x³ - 8 = (x - 2)(x² + 2x + 4)

x² - x = x(x - 1)

x³ + 2x² + 4x = x(x² + 2x + 4)

\frac{\frac{(x + 2)(x - 2)}{(x - 2)(x^2 + 2x + 4)}}{\frac{x(x - 1)}{x(x^2 + 2x + 4)}} =

\frac{\frac{(x + 2)}{(x^2 + 2x + 4)}}{\frac{(x - 1)}{(x^2 + 2x + 4)}} =

\frac{x + 2}{x^2 + 2x + 4} . {\frac{x^2 + 2x + 4}{x - 1} =

\frac{x + 2}{x - 1}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: expressão

Mensagempor jose henrique » Qui Fev 17, 2011 18:25

no enunciado da questão pede para que eu diga quais o valores de x é possível calcular essa expressão. A resposta tem que ser em intervalo.
eu poderia responder assim.
S={ R-1}
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: expressão

Mensagempor DanielFerreira » Qui Fev 17, 2011 18:37

Não tem nem um sinalzinho? :-D
complicado!
deve ser isso R - {1} mesmo então.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: expressão

Mensagempor jose henrique » Qui Fev 17, 2011 19:46

isso aí, ficaria correta assim a resposta em intervalos? S=R-{1}
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: expressão

Mensagempor Renato_RJ » Sex Fev 25, 2011 02:23

José, acho que a tua resposta seria os seguintes intervalos:

(- \infty, -2) \cup (1, + \infty)

Pois se usar x = -2 irá fazer o numerador ir para o zero, e se usar x = 1 o denominador irá a zero.... Detalhe, intervalo aberto...

Acho que é essa a resposta, caso venha a saber, poste pois fiquei curioso se acertei...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: expressão

Mensagempor LuizAquino » Sex Fev 25, 2011 09:23

jose henrique escreveu:Considere a expressão: \frac{\frac{{x}^{2}-4}{{x}^{3}-8}}{\frac{{x}^{2}-x}{{x}^{3}+2{x}^{2}+4x}}
Diga para quais valores de x é possível calcular essa expressão. Responda na forma de intervalos.


Primeiro, eu vou considerar que x pode ser apenas números reais. Se x também fosse números complexos, então a reposta seria outra.

Você deve analisar quais são os valores antes de fazer qualquer simplificação.

No caso, nós temos uma divisão de frações. O que não pode ser zero são os denominadores e o numerador x^2-x. Portanto:
x^2-x \neq 0 \Rightarrow x \neq 0 \textrm{ e } x\neq 1

x^3-8\neq 0 \Rightarrow x \neq 2

x^3+2x^2+4x \neq 0 \Rightarrow x \neq 0. Aqui, estamos considerando apenas as soluções reais.

Portanto, x \in (-\infty, \, 0) \cup (0, \, 1) \cup (1, 2) \cup (2, +\infty)

E agora, você deve se perguntar: por que devo analisar antes de fazer qualquer simplificação?

Vou dar um exemplo. Considere a expressão: \frac{x^2-4}{x-2}. Se você primeiro simplificar para depois analisar, você teria que \frac{x^2-4}{x-2} = \frac{(x-2)(x+2)}{x-2} = x + 2, e como não há restrições na expressão x+2 você diria que x pode ser qualquer número. Obviamente, isso está errado! O correto é que x pode ser qualquer número real exceto o 2. O erro aconteceu quando você simplificou o termo (x-2), o que só pode ser feito se ele não for zero, portanto se x não for 2.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: expressão

Mensagempor jose henrique » Seg Fev 28, 2011 19:39

:y: :y: :y:
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.