por jose henrique » Qua Fev 16, 2011 18:16
considere a expressão:

diga para quais valores de x é possível calcular essa expressão. Responda na forma de intervalos.
Simplifique a expressão de forma a obter uma expressão com um polinômio no numerador e um polinômio no denominador.
iguale a expressão dada à 2x e resolva a equação encontrada. para resolver essa equação você pode usar a expressão simplificada.
o primeiro item eu não consegui responder, pois a equação

não possui solução em R.
o segundo item a minha resposta deu

e o terceiro item pedia para eu igualar o item anterior a 2x.

=2x deu S={-1/2, 2}
alguém poderia me ajudar nesta questão.
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por Renato_RJ » Qua Fev 16, 2011 20:03
Mas a questão te limita no domínio dos inteiros ??
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por jose henrique » Qui Fev 17, 2011 16:31
o enunciado da questão está do mesmo jeito que eu descrevi na postagem, e agora com a sua interpolação ficou a dúvida.
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por DanielFerreira » Qui Fev 17, 2011 17:49
José,
poderia confirmar x³ + x² + 4x ?!
não é x³ + 2x² + 4x????
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por jose henrique » Qui Fev 17, 2011 17:53
correto
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por DanielFerreira » Qui Fev 17, 2011 18:04
então...
x² - 4 = (x + 2)(x - 2)
x³ - 8 = (x - 2)(x² + 2x + 4)
x² - x = x(x - 1)
x³ + 2x² + 4x = x(x² + 2x + 4)




"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por jose henrique » Qui Fev 17, 2011 18:25
no enunciado da questão pede para que eu diga quais o valores de x é possível calcular essa expressão. A resposta tem que ser em intervalo.
eu poderia responder assim.
S={ R-1}
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por DanielFerreira » Qui Fev 17, 2011 18:37
Não tem nem um sinalzinho?
complicado!
deve ser isso
R - {1} mesmo então.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por jose henrique » Qui Fev 17, 2011 19:46
isso aí, ficaria correta assim a resposta em intervalos? S=R-{1}
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por Renato_RJ » Sex Fev 25, 2011 02:23
José, acho que a tua resposta seria os seguintes intervalos:

Pois se usar x = -2 irá fazer o numerador ir para o zero, e se usar x = 1 o denominador irá a zero.... Detalhe, intervalo aberto...
Acho que é essa a resposta, caso venha a saber, poste pois fiquei curioso se acertei...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por LuizAquino » Sex Fev 25, 2011 09:23
jose henrique escreveu:Considere a expressão:

Diga para quais valores de x é possível calcular essa expressão. Responda na forma de intervalos.
Primeiro, eu vou considerar que x pode ser apenas números reais. Se x também fosse números complexos, então a reposta seria outra.
Você deve analisar quais são os valores
antes de fazer qualquer simplificação.
No caso, nós temos uma divisão de frações. O que não pode ser zero são os denominadores e o numerador

. Portanto:



. Aqui, estamos considerando apenas as soluções reais.
Portanto,

E agora, você deve se perguntar: por que devo analisar
antes de fazer qualquer simplificação?
Vou dar um exemplo. Considere a expressão:

. Se você primeiro simplificar para depois analisar, você teria que

, e como não há restrições na expressão x+2 você diria que x pode ser qualquer número. Obviamente, isso está errado! O correto é que x pode ser qualquer número real exceto o 2. O erro aconteceu quando você simplificou o termo (x-2), o que
só pode ser feito se ele não for zero, portanto se x não for 2.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por jose henrique » Seg Fev 28, 2011 19:39
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Expressão
por geriane » Qui Abr 22, 2010 12:49
- 4 Respostas
- 3589 Exibições
- Última mensagem por geriane

Sáb Abr 24, 2010 10:50
Trigonometria
-
- Expressão em PG
por Carolziiinhaaah » Qua Jun 16, 2010 21:10
- 1 Respostas
- 1830 Exibições
- Última mensagem por MarceloFantini

Qua Jun 16, 2010 21:39
Progressões
-
- EXPRESSAO
por JOHNY » Dom Set 05, 2010 15:26
- 1 Respostas
- 1903 Exibições
- Última mensagem por MarceloFantini

Seg Set 06, 2010 13:14
Álgebra Elementar
-
- Expressão
por maria cleide » Dom Mai 08, 2011 16:47
- 1 Respostas
- 1637 Exibições
- Última mensagem por Molina

Dom Mai 08, 2011 18:01
Sistemas de Equações
-
- Expressão
por Robinho » Sáb Jan 14, 2012 14:46
- 1 Respostas
- 1174 Exibições
- Última mensagem por Renato_RJ

Sáb Jan 14, 2012 15:03
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.