• Anúncio Global
    Respostas
    Exibições
    Última mensagem

relaçoes metricas nos triangulos

relaçoes metricas nos triangulos

Mensagempor stanley tiago » Sáb Fev 12, 2011 19:34

calcule a area de um triangulo retangulo , sabendo que um deuseus catetos mede o triplo do outro e que seu perimetro vale 8+2\sqrt[]{10} unidades


eu nao consegui desenvolver muita coisa desse problema . o q saiu foi isso

c = 3b

A=\frac{b.h}{2}

P=l+l+l

8+2\sqrt[]{10}=3l

socorro!!
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: relaçoes metricas nos triangulos

Mensagempor DanielRJ » Sáb Fev 12, 2011 20:47

stanley tiago escreveu:calcule a area de um triangulo retangulo , sabendo que um deuseus catetos mede o triplo do outro e que seu perimetro vale 8+2\sqrt[]{10} unidades


eu nao consegui desenvolver muita coisa desse problema . o q saiu foi isso

c = 3b

A=\frac{b.h}{2}

P=l+l+l

8+2\sqrt[]{10}=3l

socorro!!


Vamos lá amigo!!!

primeiro perceba que o triangulo é retangulo então traçamos a altura relativa a hipotenusa para podermos usar a relaçao metrica ok? o problema nos dar as seguintes formulas:

Area =\frac{a.h}{2}

(note que a base do triangulo é a Hipotenusa que chamarei de a.)

b.c=a.h ( Produtos dos catetos é igual o produto da hipo pela altura )

a.h=b.3b

a.h=3b^2 ( note que a.h é o denominador da Area)

c = 3b

Perimetro= 8+2\sqrt[]{10}

a+b+c=8+2\sqrt[]{10} ( substituindo )
a+4b=8+2\sqrt[]{10}


agora 2° passo:


a^2=b^2+c^2 ( pitagoras)

a^2=b^2+{(3b)^2}

a^2=b^2+9b^2

a=10b


3° passo:

a+4b=8+2\sqrt[]{10}

10b+4b=8+2\sqrt[]{10}

14b=8+2\sqrt[]{10}

b=\frac{8+2\sqrt[]{10}}{14}

b=\frac{4+\sqrt{10}}{7}



4° passo:

Area =\frac{a.h}{2} ( substituindo a.h=3b^2 )

Area =\frac{3b^2}{2}

Area= \frac {39}{49}

Acho que é isso se não for pelo menos tentei.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: relaçoes metricas nos triangulos

Mensagempor stanley tiago » Dom Fev 13, 2011 16:31

oi amigo obrigado pela tentativa , mais eu acho q vc nao entendeu muito bem .
aqueles dados à baixo foi o que eu interpretei do problema e nao que ele tenha
nos dado no enunciado .
Infelizmente a resposta nao condiz com o gabarito q trás .......... como 6 unidade


obrigado , agardo respostas :y:
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: relaçoes metricas nos triangulos

Mensagempor Neperiano » Dom Fev 13, 2011 16:45

Ola

Eu nem conferi o resultado se da certo, mas acredito que de para resolver assim

Chame um cateto de x
Outro de 3x
Agora descubra a hipotenusa

h^2=x^2+(3x)^2
no final h= x+3x

Agora substitua isso no perimetro

x+3x+x+3x=8+2raiz10

Descubra o x, dai substitua ele no x e 3x, multiplique os dois e divida por dois

Acho que da certo, mas naum tenho certeza

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: relaçoes metricas nos triangulos

Mensagempor stanley tiago » Dom Fev 13, 2011 18:04

a=x+3x ;b=x; c=3x

8x=8+2\sqrt[]{10}

8x-8=2\sqrt[]{10}

(8x-8)^2=(2\sqrt[]{10})^2

64x^2-128x+64=4.10

64x^2-128x+24=0 /(2)

32x^2-64x+12=0

\Delta=-64^2-4.32.12

\Delta=4096-1536

\Delta=\sqrt[]{2560}

\Delta=16\sqrt[]{10}

x'=\frac{4+\sqrt[]{10}}{4}

x"=\frac{4-\sqrt[]{10}}{4}

ola pessoal . eu consegui chegar até aqui mais acredito q nao esta correto, dessa maneira pois nao cheguei ao resultado correto q é de 6 unidade

agardando resposta
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}