• Anúncio Global
    Respostas
    Exibições
    Última mensagem

relaçoes metricas nos triangulos

relaçoes metricas nos triangulos

Mensagempor stanley tiago » Sáb Fev 12, 2011 19:34

calcule a area de um triangulo retangulo , sabendo que um deuseus catetos mede o triplo do outro e que seu perimetro vale 8+2\sqrt[]{10} unidades


eu nao consegui desenvolver muita coisa desse problema . o q saiu foi isso

c = 3b

A=\frac{b.h}{2}

P=l+l+l

8+2\sqrt[]{10}=3l

socorro!!
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: relaçoes metricas nos triangulos

Mensagempor DanielRJ » Sáb Fev 12, 2011 20:47

stanley tiago escreveu:calcule a area de um triangulo retangulo , sabendo que um deuseus catetos mede o triplo do outro e que seu perimetro vale 8+2\sqrt[]{10} unidades


eu nao consegui desenvolver muita coisa desse problema . o q saiu foi isso

c = 3b

A=\frac{b.h}{2}

P=l+l+l

8+2\sqrt[]{10}=3l

socorro!!


Vamos lá amigo!!!

primeiro perceba que o triangulo é retangulo então traçamos a altura relativa a hipotenusa para podermos usar a relaçao metrica ok? o problema nos dar as seguintes formulas:

Area =\frac{a.h}{2}

(note que a base do triangulo é a Hipotenusa que chamarei de a.)

b.c=a.h ( Produtos dos catetos é igual o produto da hipo pela altura )

a.h=b.3b

a.h=3b^2 ( note que a.h é o denominador da Area)

c = 3b

Perimetro= 8+2\sqrt[]{10}

a+b+c=8+2\sqrt[]{10} ( substituindo )
a+4b=8+2\sqrt[]{10}


agora 2° passo:


a^2=b^2+c^2 ( pitagoras)

a^2=b^2+{(3b)^2}

a^2=b^2+9b^2

a=10b


3° passo:

a+4b=8+2\sqrt[]{10}

10b+4b=8+2\sqrt[]{10}

14b=8+2\sqrt[]{10}

b=\frac{8+2\sqrt[]{10}}{14}

b=\frac{4+\sqrt{10}}{7}



4° passo:

Area =\frac{a.h}{2} ( substituindo a.h=3b^2 )

Area =\frac{3b^2}{2}

Area= \frac {39}{49}

Acho que é isso se não for pelo menos tentei.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: relaçoes metricas nos triangulos

Mensagempor stanley tiago » Dom Fev 13, 2011 16:31

oi amigo obrigado pela tentativa , mais eu acho q vc nao entendeu muito bem .
aqueles dados à baixo foi o que eu interpretei do problema e nao que ele tenha
nos dado no enunciado .
Infelizmente a resposta nao condiz com o gabarito q trás .......... como 6 unidade


obrigado , agardo respostas :y:
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: relaçoes metricas nos triangulos

Mensagempor Neperiano » Dom Fev 13, 2011 16:45

Ola

Eu nem conferi o resultado se da certo, mas acredito que de para resolver assim

Chame um cateto de x
Outro de 3x
Agora descubra a hipotenusa

h^2=x^2+(3x)^2
no final h= x+3x

Agora substitua isso no perimetro

x+3x+x+3x=8+2raiz10

Descubra o x, dai substitua ele no x e 3x, multiplique os dois e divida por dois

Acho que da certo, mas naum tenho certeza

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: relaçoes metricas nos triangulos

Mensagempor stanley tiago » Dom Fev 13, 2011 18:04

a=x+3x ;b=x; c=3x

8x=8+2\sqrt[]{10}

8x-8=2\sqrt[]{10}

(8x-8)^2=(2\sqrt[]{10})^2

64x^2-128x+64=4.10

64x^2-128x+24=0 /(2)

32x^2-64x+12=0

\Delta=-64^2-4.32.12

\Delta=4096-1536

\Delta=\sqrt[]{2560}

\Delta=16\sqrt[]{10}

x'=\frac{4+\sqrt[]{10}}{4}

x"=\frac{4-\sqrt[]{10}}{4}

ola pessoal . eu consegui chegar até aqui mais acredito q nao esta correto, dessa maneira pois nao cheguei ao resultado correto q é de 6 unidade

agardando resposta
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?