Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por stalone » Seg Dez 21, 2009 23:29
Este problema consiste em que dado um conjunto de tamanho impar contendo os números { 1 , 2, 3, 4 , .... , 2n+1} , obtemos um conjunto { N1, N2 ,N3 , .....,N 2n+1}
com os mesmos elementos só que não necessáriamente na mesma ordem do primeiro conjunto como { 7 , 2 , 6 , 3 , 1 , 5, 4} , do conjunto { 1 , 2, 3 , 4 , 5 , 6 , 7}
Prove que a expressão :
(1 - N1).(2- N2) . (3 - N3) ...... . (2n+1 - N 2n+1)
resulta sempre em um número par , seja qual for a ordem dos elementos do conjunto { N1, N2 ,N3 , .....,N 2n+1}
-
stalone
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Dez 18, 2009 16:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Computação
- Andamento: formado
por stalone » Ter Dez 22, 2009 11:46
Como exemplo ilustrativo , vamos pegar o seguinte teste:
de { 1 ,2 ,3 ,4,5} tenho como conjunto escolhido o { 3, 4 , 1 ,5 ,2}
logo a expressao fica :
( 1 - 3 ) . ( 2 - 4) . (3 - 1).(4 - 5).(5 -2) = (-2) .(-2).(2).(-1).(3) = - 24
que é par , logo prova que não importa o tamanho do conjunto base e nem a sequencia ,
sempre teremos um número par como resultado.

.
-
stalone
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Dez 18, 2009 16:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Computação
- Andamento: formado
por al-mahed » Sáb Dez 11, 2010 23:19
É simples, existem M elementos pares em cada conjunto, e M+1 elementos ímpares, a única forma de a diferença ser ímpar é par menos ímpar (ou ímpar menos par). Se a paridade dos números subtraídos em uma das diferenças que seja for par, todo o produto será par, assim obviamente que temos que alinhar os pares com os ímpares, porém existe um número ímpar a mais em cada conjunto, logo sobrarão dois ímpares após o alinhamento, e essa diferença será um par que entrará no produto. Logo o produto será sempre par.
-
al-mahed
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Dez 11, 2010 21:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: filosofia
- Andamento: formado
por PedroSantos » Dom Dez 12, 2010 05:08
Se bem compreendi, dado um conjunto sequêncialmente ordenado de números naturais de tamanho impar, constroi-se outro conjunto constituido pelos mesmos elementos mas com uma ordenação aleatória.Assim se C={1,2,3,4,5}, pode-se construir S={5,2,4,3,1}. Agora subtrai-se a cada termo de ordem n de C um termo de S da mesma ordem n.
Teremos:
(1-5).(2-2).(3-4).(4-3).(5-1) = (-4).0.(-1).1.4 = 0
A não ser que me tenha escapado alguma coisa, parece que existe uma exepção.
-
PedroSantos
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Dez 01, 2010 16:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ensino secundário
- Andamento: cursando
por MarceloFantini » Dom Dez 12, 2010 14:03
0 é par.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por stalone » Seg Dez 13, 2010 13:07
Está corretíssimo al-mahed , parabéns.

-
stalone
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Dez 18, 2009 16:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Computação
- Andamento: formado
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Provar que ||u|| > 0
por 0 kelvin » Qui Mar 24, 2011 20:35
- 2 Respostas
- 1786 Exibições
- Última mensagem por 0 kelvin

Qui Mar 24, 2011 21:16
Geometria Analítica
-
- Provar
por scggomes » Sex Abr 15, 2011 16:38
- 8 Respostas
- 5613 Exibições
- Última mensagem por MarceloFantini

Sáb Abr 16, 2011 15:56
Cálculo para Funções de Uma Variável Real I
-
- provar que
por anamendes » Ter Jun 19, 2012 07:41
- 1 Respostas
- 1291 Exibições
- Última mensagem por fraol

Qua Jun 20, 2012 21:19
Trigonometria
-
- Provar
por Jovani Souza » Ter Jun 11, 2013 21:03
- 0 Respostas
- 930 Exibições
- Última mensagem por Jovani Souza

Ter Jun 11, 2013 21:03
Álgebra Elementar
-
- provar!
por Jovani Souza » Qua Jul 03, 2013 18:27
- 0 Respostas
- 1099 Exibições
- Última mensagem por Jovani Souza

Qua Jul 03, 2013 18:27
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.