por matheuszila » Dom Nov 28, 2010 14:36
(UFPI -1996) O número de soluções reais distintas da equação 3^x -9 = log3 (x+9) é
Acho que não dá pra determinar as raízes mas gostaria de saber como chegar ao resultado que é 2
-
matheuszila
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Nov 28, 2010 14:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Elcioschin » Dom Nov 28, 2010 22:25
3^x - 9 = log3 (x + 9)
Fazedo x = 2 ----> 3² - 9 = log3 (3 + 9) ----> 9 - 9 = log3 (12) ----> log3 (12) = 0 ----> Impossível
Acredito que exista algum erro no enunciado
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por MarceloFantini » Seg Nov 29, 2010 02:27
Elcio, você interpretou errado. O enunciado quer dizer que existem 2 soluções reais distintas, não que

é uma das soluções.
Matheus, acredito que a abordagem a ser tomada num exercício como este é fazer esboço dos gráficos e ver se corta e em quantos pontos.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Elcioschin » Seg Nov 29, 2010 08:54
Fantini
Você está coberto de razão: eu lí muito rapidamente e inerpretei errado.
De qualquer modo a equação não é algébrica, tornando-se necessária uma análise gráfica.
Acho estranho uma questão desta num vestibular. Por isto achei necessário confirmar o enunciado.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por matheuszila » Qui Dez 09, 2010 10:11
Estava em dúvida se era realmente necessário utilizar o método gráfico, muito obrigado por terem respondido minhas dúvidas, finalmente resolvi a questão.
-
matheuszila
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Nov 28, 2010 14:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Elcioschin » Sex Dez 10, 2010 22:24
matheuszila
Seria interessante você postar sua solução aqui no fórum. Os objetivos são:
1) O susários do fórum aprenderem
2) Sanar a dúvida sobre o enunciado, por mim manifestada.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por matheuszila » Sex Dez 10, 2010 22:30
É meio complicado para mim, que estou começando no site agora saber exatamente todas as regras, mas assim que conseguir criar os gráficos postarei as imagens para vcs aqui do ajuda matemática que me ajudaram bastante.
Estou até usando os livros: Fundamentos da Matemática Elementar para me auxiliarem no processo de elaboração dos gráficos.
-
matheuszila
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Nov 28, 2010 14:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite com raízes de índices diferentes
por danivelosor » Sáb Mar 28, 2015 21:45
- 0 Respostas
- 1368 Exibições
- Última mensagem por danivelosor

Sáb Mar 28, 2015 21:45
Cálculo: Limites, Derivadas e Integrais
-
- CÁLCULO DE LIMITE COM RAIZES DE ÍNDICES DIFERENTES
por thiago15_2 » Qui Fev 27, 2014 01:20
- 1 Respostas
- 2323 Exibições
- Última mensagem por young_jedi

Sex Fev 28, 2014 15:15
Cálculo: Limites, Derivadas e Integrais
-
- número reais
por jose henrique » Ter Fev 15, 2011 15:53
- 4 Respostas
- 2039 Exibições
- Última mensagem por jose henrique

Ter Fev 15, 2011 17:56
Álgebra Elementar
-
- (ITA) Determinar No de Raízes Reais
por Carolziiinhaaah » Sáb Jun 19, 2010 11:59
- 1 Respostas
- 1144 Exibições
- Última mensagem por Douglasm

Sáb Jun 19, 2010 21:25
Álgebra Elementar
-
- Equação com raizes reais
por Thays » Ter Jan 22, 2013 12:48
- 4 Respostas
- 2028 Exibições
- Última mensagem por DanielFerreira

Ter Jan 22, 2013 20:29
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.