por lizbortolli » Sáb Nov 20, 2010 00:07
1- calcule o valor de x usando em cada caso as propriedades operatórias:
a)
b)

2-adimitindo que log2

0,3 , qual é o valor de:
![log\left(\frac{20}{\sqrt[5]{4}} \right) log\left(\frac{20}{\sqrt[5]{4}} \right)](/latexrender/pictures/c489fe56d6ecdb7cf7b68b7b9ea43428.png)
-
lizbortolli
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Nov 19, 2010 23:44
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: agronomia
- Andamento: cursando
por Loretto » Sáb Nov 20, 2010 02:34
2.log x = log 3 + log 4
2.log x = log (3.4)
2.log x = log 12
2.log x = log 2^2.3
2.log x = 2.log 2.3
2.log x = 2.log 6
log x = log 6
10^log6 = x
x = 6
-------------------------
a^log b (na base a) = b
-
Loretto
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Dom Jul 25, 2010 01:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: exatas
- Andamento: cursando
por 0 kelvin » Sáb Nov 20, 2010 12:41
Estranhei essa passagem log 12 = 2 log (2 x 3)
Pq log (2 log 6) é (log 36).
Edit: ah sim,

.

o negativo é descartado pela definição do log.
Pois

b) Lembre que

2- Lembre que
![\sqrt[5]{4} = 4^{\frac{1}{5}} \sqrt[5]{4} = 4^{\frac{1}{5}}](/latexrender/pictures/8077175832c205e140f8234588c7f3ee.png)
Log 20. 20 não dá pra fatorar numa base só, vai ficar 2 x 2 x 5. Mas 5 pode ser escrito como 10/2, aí é só usar a propriedade do quociente, pois log de 10 na base 10 é 1 e log de 2 esta dado como 0,3 aprox.
Editado pela última vez por
0 kelvin em Sáb Nov 20, 2010 14:08, em um total de 1 vez.
-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
por Lorettto » Seg Dez 20, 2010 14:59
Questão 2:
log (20 / raiz quinta (4)) = log ( 20 / (4 ^(1/5)) = log (20 / (2²) ^ (1/5)) = log (20 / (2 ^ (2/5))
Racionalizando (tirando a raiz do denominador), multiplicamos em cima e em baixo por 2 ^ (3/5)
= log (20 * (2 ^(3/5)) / (2 ^ (2/5) * 2 ^ (3/5)) = log ( 20 * (2 ^ (3/5)) / 2) = log (10 * (2 ^ (3/5))
= log 10 + log (2 ^(3/5)) = 1 + 3/5 * log 2 = 1 + 0,6 * log 2
Considerando log 2 = 0,3 obtemos o valor aproximado
= 1 + 0,6 * 0,3 = 1 + 0,18 = 1,18
"RESPOSTA DE PAULISTA."
Abraço,
Loreto
-
Lorettto
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Sáb Nov 27, 2010 01:17
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- ajuda com logaritimos
por Andersonborges » Sáb Fev 26, 2011 16:57
- 7 Respostas
- 3535 Exibições
- Última mensagem por Molina

Qui Mar 03, 2011 00:18
Logaritmos
-
- continuando com logaritimos
por Andersonborges » Sáb Fev 26, 2011 17:10
- 1 Respostas
- 1352 Exibições
- Última mensagem por Molina

Sáb Fev 26, 2011 18:27
Logaritmos
-
- Equação de logarítimos
por lilianers » Sex Mar 29, 2013 21:27
- 1 Respostas
- 1485 Exibições
- Última mensagem por young_jedi

Sáb Mar 30, 2013 11:54
Logaritmos
-
- Equação de logarítimos
por lilianers » Sex Mar 29, 2013 21:29
- 2 Respostas
- 1984 Exibições
- Última mensagem por lilianers

Sex Mar 29, 2013 22:08
Logaritmos
-
- LIMITES de exponenciais e logaritimos
por inkz » Qua Dez 05, 2012 16:13
- 1 Respostas
- 1587 Exibições
- Última mensagem por e8group

Qua Dez 05, 2012 20:45
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.