por lizbortolli » Sáb Nov 20, 2010 00:07
1- calcule o valor de x usando em cada caso as propriedades operatórias:
a)
b)

2-adimitindo que log2

0,3 , qual é o valor de:
![log\left(\frac{20}{\sqrt[5]{4}} \right) log\left(\frac{20}{\sqrt[5]{4}} \right)](/latexrender/pictures/c489fe56d6ecdb7cf7b68b7b9ea43428.png)
-
lizbortolli
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Nov 19, 2010 23:44
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: agronomia
- Andamento: cursando
por Loretto » Sáb Nov 20, 2010 02:34
2.log x = log 3 + log 4
2.log x = log (3.4)
2.log x = log 12
2.log x = log 2^2.3
2.log x = 2.log 2.3
2.log x = 2.log 6
log x = log 6
10^log6 = x
x = 6
-------------------------
a^log b (na base a) = b
-
Loretto
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Dom Jul 25, 2010 01:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: exatas
- Andamento: cursando
por 0 kelvin » Sáb Nov 20, 2010 12:41
Estranhei essa passagem log 12 = 2 log (2 x 3)
Pq log (2 log 6) é (log 36).
Edit: ah sim,

.

o negativo é descartado pela definição do log.
Pois

b) Lembre que

2- Lembre que
![\sqrt[5]{4} = 4^{\frac{1}{5}} \sqrt[5]{4} = 4^{\frac{1}{5}}](/latexrender/pictures/8077175832c205e140f8234588c7f3ee.png)
Log 20. 20 não dá pra fatorar numa base só, vai ficar 2 x 2 x 5. Mas 5 pode ser escrito como 10/2, aí é só usar a propriedade do quociente, pois log de 10 na base 10 é 1 e log de 2 esta dado como 0,3 aprox.
Editado pela última vez por
0 kelvin em Sáb Nov 20, 2010 14:08, em um total de 1 vez.
-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
por Lorettto » Seg Dez 20, 2010 14:59
Questão 2:
log (20 / raiz quinta (4)) = log ( 20 / (4 ^(1/5)) = log (20 / (2²) ^ (1/5)) = log (20 / (2 ^ (2/5))
Racionalizando (tirando a raiz do denominador), multiplicamos em cima e em baixo por 2 ^ (3/5)
= log (20 * (2 ^(3/5)) / (2 ^ (2/5) * 2 ^ (3/5)) = log ( 20 * (2 ^ (3/5)) / 2) = log (10 * (2 ^ (3/5))
= log 10 + log (2 ^(3/5)) = 1 + 3/5 * log 2 = 1 + 0,6 * log 2
Considerando log 2 = 0,3 obtemos o valor aproximado
= 1 + 0,6 * 0,3 = 1 + 0,18 = 1,18
"RESPOSTA DE PAULISTA."
Abraço,
Loreto
-
Lorettto
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Sáb Nov 27, 2010 01:17
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- ajuda com logaritimos
por Andersonborges » Sáb Fev 26, 2011 16:57
- 7 Respostas
- 3513 Exibições
- Última mensagem por Molina

Qui Mar 03, 2011 00:18
Logaritmos
-
- continuando com logaritimos
por Andersonborges » Sáb Fev 26, 2011 17:10
- 1 Respostas
- 1345 Exibições
- Última mensagem por Molina

Sáb Fev 26, 2011 18:27
Logaritmos
-
- Equação de logarítimos
por lilianers » Sex Mar 29, 2013 21:27
- 1 Respostas
- 1473 Exibições
- Última mensagem por young_jedi

Sáb Mar 30, 2013 11:54
Logaritmos
-
- Equação de logarítimos
por lilianers » Sex Mar 29, 2013 21:29
- 2 Respostas
- 1964 Exibições
- Última mensagem por lilianers

Sex Mar 29, 2013 22:08
Logaritmos
-
- LIMITES de exponenciais e logaritimos
por inkz » Qua Dez 05, 2012 16:13
- 1 Respostas
- 1579 Exibições
- Última mensagem por e8group

Qua Dez 05, 2012 20:45
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.