• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(AFA) DETERMINANTE

(AFA) DETERMINANTE

Mensagempor natanskt » Sáb Nov 20, 2010 10:46

considere as matrizes A=(aij)2x2 e B=(bij)2x2 definidas por aij=x^i - x^j e bij=(i+j)x,xeR* . se a função de f:R* \rightarrow  R é definida por f(x)=1/x,então para x=\frac{DetB}{DetA}o valor de f(x) é:
a-)(x-1)^2
b-)(x-2)^2
c-)-(x-1)^2
d-)-(x-2)^2


minha tentativa de resolução:
os elementos de a e b coloquei assim a11 a12 a13 etc,(vcs entenderam)
depois eu apliquei a definição nos dois: aij=x^i-x^j e bij=(i+j)x esse X eu chutei valor pra ele
depois de calcular a definição eu calculei o det
e dividi um pelo outro o valor eu coloquei aqui f(x)=1/x


o resultado não bate eu acho que fiz tudo errado

valeu!
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (AFA) DETERMINANTE

Mensagempor MarceloFantini » Sáb Nov 20, 2010 12:27

Você não deve chutar valores para o x. Monte as matrizes e depois calcule os determinantes e faça a razão. Em seguida, jogue na função.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (AFA) DETERMINANTE

Mensagempor natanskt » Seg Nov 22, 2010 14:44

alguem aew me ajuda.que eu não to conmseguindo.
acho que to no caminho certo,mais faz hora que eu tento e não dá certo.
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (AFA) DETERMINANTE

Mensagempor monicadiasf » Sex Abr 20, 2012 16:00

Não sei usar o Latex direito -.-
Mas vou ajudar!

Encontrando os elementos da matriz A e o seu respectivo determinante:
aij= x^i - x^j

a11= x^1 - x^1 = 0 
                        
a12= x^1 - x^2 = x - x^2 
 
a21= x^2 - x^1 = x^2 -x 
                      
a22= x^2 - x^2 = 0

detA = + (a11 * a22) - (a12 * a21)

detA = 0 - [(x^2 -x)(x - x^2)]

detA = x^2(x-1)^2

Encontrando os elementos da matriz B e o seu respectivo determinante:
bij= (i + j)x

b11= (1 + 1)x = 2x

b12= (1 + 2)x = 3x

b21= (2 + 1)x = 3x

b22= (2 + 2)x = 4x

detB = + (b11 * b22) - (b12 * b21)

detB = + (2x * 4x) - (3x * 3x)

detB = -x^2

Sendo que:

x = \frac{detB}{detA}

Então:
x = \frac{-x^2}{x^2(x-1)^2}

x = \frac{-1}{(x-1)^2}

Substituíndo esse valor de x na função dada:

f(x) = \frac{1}{\frac{-1}{(x-1)^2}}

f(x) = -(x-1)^2

Logo, a resposta é a letra C
monicadiasf
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Abr 20, 2012 15:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisioterapia
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: