• Anúncio Global
    Respostas
    Exibições
    Última mensagem

me ajudem

me ajudem

Mensagempor weverton » Seg Nov 08, 2010 16:11

1- dados A=logx, B=log(x+2) e C=log3, calcule x para que se tenha A+B=C

me ajudem por favor,desde ja agradeço!
weverton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Sex Mai 14, 2010 01:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: enfermagem
Andamento: formado

Re: me ajudem

Mensagempor MarceloFantini » Seg Nov 08, 2010 16:52

Substituia A, B e C e use propriedades.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: me ajudem

Mensagempor weverton » Seg Nov 08, 2010 17:28

ola sera q vc nao poderia me dar um exemplo e q eu nao entendo muito de log !
weverton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Sex Mai 14, 2010 01:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: enfermagem
Andamento: formado

Re: me ajudem

Mensagempor MarceloFantini » Seg Nov 08, 2010 17:37

Você conhece as propriedades?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: me ajudem

Mensagempor weverton » Qua Nov 10, 2010 01:14

e a multiplicação,divisão e exponenciação !

axo q e isso estou certo?
weverton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Sex Mai 14, 2010 01:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: enfermagem
Andamento: formado

Re: me ajudem

Mensagempor MarceloFantini » Qua Nov 10, 2010 01:18

Falta uma, mudança de base. Enfim, se você souber responder à pergunta que eu farei agora, você saberá responder a questão: calcule x = \log_a b + \log_a c
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: me ajudem

Mensagempor weverton » Qua Nov 10, 2010 01:35

so pra eu entender a soma de log x + log(x+2) =C e isso?
weverton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Sex Mai 14, 2010 01:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: enfermagem
Andamento: formado

Re: me ajudem

Mensagempor MarceloFantini » Qua Nov 10, 2010 01:43

Sim, e lembre-se que C = \log 3, portanto aplique a propriedade da soma de logaritmos, encontre possíveis valores de x e verifique condições de existência. Após isso, terá as respostas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59