• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Provar se é par

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Provar se é par

Mensagempor stalone » Seg Dez 21, 2009 23:29

Este problema consiste em que dado um conjunto de tamanho impar contendo os números { 1 , 2, 3, 4 , .... , 2n+1} , obtemos um conjunto { N1, N2 ,N3 , .....,N 2n+1}
com os mesmos elementos só que não necessáriamente na mesma ordem do primeiro conjunto como { 7 , 2 , 6 , 3 , 1 , 5, 4} , do conjunto { 1 , 2, 3 , 4 , 5 , 6 , 7}

Prove que a expressão :

(1 - N1).(2- N2) . (3 - N3) ...... . (2n+1 - N 2n+1)

resulta sempre em um número par , seja qual for a ordem dos elementos do conjunto { N1, N2 ,N3 , .....,N 2n+1}
stalone
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Dez 18, 2009 16:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: formado

Re: Provar se é par

Mensagempor stalone » Ter Dez 22, 2009 11:46

Como exemplo ilustrativo , vamos pegar o seguinte teste:

de { 1 ,2 ,3 ,4,5} tenho como conjunto escolhido o { 3, 4 , 1 ,5 ,2}

logo a expressao fica :

( 1 - 3 ) . ( 2 - 4) . (3 - 1).(4 - 5).(5 -2) = (-2) .(-2).(2).(-1).(3) = - 24

que é par , logo prova que não importa o tamanho do conjunto base e nem a sequencia ,
sempre teremos um número par como resultado.

:D.
stalone
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Dez 18, 2009 16:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: formado

Re: Provar se é par

Mensagempor al-mahed » Sáb Dez 11, 2010 23:19

É simples, existem M elementos pares em cada conjunto, e M+1 elementos ímpares, a única forma de a diferença ser ímpar é par menos ímpar (ou ímpar menos par). Se a paridade dos números subtraídos em uma das diferenças que seja for par, todo o produto será par, assim obviamente que temos que alinhar os pares com os ímpares, porém existe um número ímpar a mais em cada conjunto, logo sobrarão dois ímpares após o alinhamento, e essa diferença será um par que entrará no produto. Logo o produto será sempre par.
al-mahed
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 11, 2010 21:13
Formação Escolar: GRADUAÇÃO
Área/Curso: filosofia
Andamento: formado

Re: Provar se é par

Mensagempor PedroSantos » Dom Dez 12, 2010 05:08

Se bem compreendi, dado um conjunto sequêncialmente ordenado de números naturais de tamanho impar, constroi-se outro conjunto constituido pelos mesmos elementos mas com uma ordenação aleatória.Assim se C={1,2,3,4,5}, pode-se construir S={5,2,4,3,1}. Agora subtrai-se a cada termo de ordem n de C um termo de S da mesma ordem n.
Teremos:

(1-5).(2-2).(3-4).(4-3).(5-1) = (-4).0.(-1).1.4 = 0

A não ser que me tenha escapado alguma coisa, parece que existe uma exepção.
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Provar se é par

Mensagempor MarceloFantini » Dom Dez 12, 2010 14:03

0 é par.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Provar se é par

Mensagempor stalone » Seg Dez 13, 2010 13:07

Está corretíssimo al-mahed , parabéns.
:-D
stalone
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Dez 18, 2009 16:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?