• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Problemas de Equaçoes]

[Problemas de Equaçoes]

Mensagempor R0nny » Sáb Mai 04, 2013 15:01

Um fazendeiro quer construir um curral rectangular. Para cercá-lo, dispoe de 400 m de arame e de uma parede já existente. Sabendo que a cerca de arame terá 4 voltas, determine as dimensoes desse curral para que a sua área seja máxima. Fonte: Questao foi colocado por meu Professor(Adolfo Magode). Entao, neste exercicio temos que ter em conta duas condiçoes o perimetro do rectangulo e a área do rectangulo, eu calculei usando o perimetro= 4x+4y=400, pois o problema diz que o arame( a parte externa do curral) dá 4 voltas, sabendo que o perimetro de um rectangulo é dado por: P= 2x+2y, no final obtive 50m por 200m, mas o gabarito deste exercicio diz que é 25m por 50m. *-)
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando

Re: [Problemas de Equaçoes]

Mensagempor young_jedi » Sáb Mai 04, 2013 18:44

o enunciado diz que já existe uma parede que ira formar o retângulo
portanto você terá que cercar dois lados x e um lado y portanto você tem que

4(2x+y)=400

tente concluir e comente se tiver duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Problemas de Equaçoes]

Mensagempor R0nny » Sáb Mai 04, 2013 19:51

Percebi, ao resolver eu havia posto P= 2x+y, porque ja existia uma parede, e nao tomei em conta o 4, sim ja resolvi, teremos que A=x(100-2x)= -2x²+100x, se querem as dimensoes querem o valor de comprimento(x) e a largura(y), entao se queremos o comprimento(x-xv) Xv= -b/2a, entao teremoss x=100/4=25, apartir daí ja podemos calcular o valor da largura(y), apos termos feito no perimetro inscrito, isto é: 4(2x+y)=400; 8x+4y, y=400-8x/4= 100-2x, entao partir daí temos que y=100-2x, entao: 100-2.25= 50; Conclusao: o lado oposto á parede medirá 50m e os seus adjacentes mediram cada um 25m. Jedi eu te agradeço bastante...!!! Muito obrigadoo, obrigado mesmo! Óptimo dia! Mais uma vez Obrigado :) :y:
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.