por R0nny » Sáb Mai 04, 2013 15:01
Um fazendeiro quer construir um curral rectangular. Para cercá-lo, dispoe de 400 m de arame e de uma parede já existente. Sabendo que a cerca de arame terá 4 voltas, determine as dimensoes desse curral para que a sua área seja máxima. Fonte: Questao foi colocado por meu Professor(Adolfo Magode). Entao, neste exercicio temos que ter em conta duas condiçoes o perimetro do rectangulo e a área do rectangulo, eu calculei usando o perimetro= 4x+4y=400, pois o problema diz que o arame( a parte externa do curral) dá 4 voltas, sabendo que o perimetro de um rectangulo é dado por: P= 2x+2y, no final obtive 50m por 200m, mas o gabarito deste exercicio diz que é 25m por 50m.

-
R0nny
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Abr 28, 2013 10:53
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Estudante
- Andamento: cursando
por young_jedi » Sáb Mai 04, 2013 18:44
o enunciado diz que já existe uma parede que ira formar o retângulo
portanto você terá que cercar dois lados x e um lado y portanto você tem que

tente concluir e comente se tiver duvidas
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por R0nny » Sáb Mai 04, 2013 19:51
Percebi, ao resolver eu havia posto P= 2x+y, porque ja existia uma parede, e nao tomei em conta o 4, sim ja resolvi, teremos que A=x(100-2x)= -2x²+100x, se querem as dimensoes querem o valor de comprimento(x) e a largura(y), entao se queremos o comprimento(x-xv) Xv= -b/2a, entao teremoss x=100/4=25, apartir daí ja podemos calcular o valor da largura(y), apos termos feito no perimetro inscrito, isto é: 4(2x+y)=400; 8x+4y, y=400-8x/4= 100-2x, entao partir daí temos que y=100-2x, entao: 100-2.25= 50; Conclusao: o lado oposto á parede medirá 50m e os seus adjacentes mediram cada um 25m. Jedi eu te agradeço bastante...!!! Muito obrigadoo, obrigado mesmo! Óptimo dia! Mais uma vez Obrigado

-
R0nny
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Abr 28, 2013 10:53
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- problemas com equacoes de 1 grau
por luanxd » Qua Jan 27, 2010 23:14
- 2 Respostas
- 2198 Exibições
- Última mensagem por luanxd

Sáb Jan 30, 2010 23:31
Polinômios
-
- Problemas com equações biquadradas
por Viivii » Qua Ago 24, 2011 23:05
- 4 Respostas
- 3798 Exibições
- Última mensagem por Neperiano

Qui Ago 25, 2011 17:59
Sistemas de Equações
-
- Problemas matemáticos envolvendo equações.
por mynameisnandoo » Qui Out 06, 2011 14:57
- 0 Respostas
- 2479 Exibições
- Última mensagem por mynameisnandoo

Qui Out 06, 2011 14:57
Tópicos sem Interação (leia as regras)
-
- Problemas com equações do 2° Questão valendo 1 ponto
por jvpetrucci » Qui Mai 03, 2012 19:14
- 12 Respostas
- 5771 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 22:35
Sistemas de Equações
-
- [Problemas de Valor Inicial] Equações Diferenciais
por mayconf » Ter Abr 15, 2014 18:24
- 1 Respostas
- 2009 Exibições
- Última mensagem por Russman

Ter Abr 15, 2014 22:28
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.