• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Problemas de Equaçoes]

[Problemas de Equaçoes]

Mensagempor R0nny » Sáb Mai 04, 2013 15:01

Um fazendeiro quer construir um curral rectangular. Para cercá-lo, dispoe de 400 m de arame e de uma parede já existente. Sabendo que a cerca de arame terá 4 voltas, determine as dimensoes desse curral para que a sua área seja máxima. Fonte: Questao foi colocado por meu Professor(Adolfo Magode). Entao, neste exercicio temos que ter em conta duas condiçoes o perimetro do rectangulo e a área do rectangulo, eu calculei usando o perimetro= 4x+4y=400, pois o problema diz que o arame( a parte externa do curral) dá 4 voltas, sabendo que o perimetro de um rectangulo é dado por: P= 2x+2y, no final obtive 50m por 200m, mas o gabarito deste exercicio diz que é 25m por 50m. *-)
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando

Re: [Problemas de Equaçoes]

Mensagempor young_jedi » Sáb Mai 04, 2013 18:44

o enunciado diz que já existe uma parede que ira formar o retângulo
portanto você terá que cercar dois lados x e um lado y portanto você tem que

4(2x+y)=400

tente concluir e comente se tiver duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Problemas de Equaçoes]

Mensagempor R0nny » Sáb Mai 04, 2013 19:51

Percebi, ao resolver eu havia posto P= 2x+y, porque ja existia uma parede, e nao tomei em conta o 4, sim ja resolvi, teremos que A=x(100-2x)= -2x²+100x, se querem as dimensoes querem o valor de comprimento(x) e a largura(y), entao se queremos o comprimento(x-xv) Xv= -b/2a, entao teremoss x=100/4=25, apartir daí ja podemos calcular o valor da largura(y), apos termos feito no perimetro inscrito, isto é: 4(2x+y)=400; 8x+4y, y=400-8x/4= 100-2x, entao partir daí temos que y=100-2x, entao: 100-2.25= 50; Conclusao: o lado oposto á parede medirá 50m e os seus adjacentes mediram cada um 25m. Jedi eu te agradeço bastante...!!! Muito obrigadoo, obrigado mesmo! Óptimo dia! Mais uma vez Obrigado :) :y:
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59