• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Transformações

Transformações

Mensagempor manuela » Seg Out 29, 2012 17:30

Preciso identificar, as 3 transformações geométricas que resultaram na transformação linear da imagem abaixo, além da matriz canônica da composição e o produto das matrizes canônicas das transformações aplicadas. Lembrando que a transformação inicial forma um quadrado de vértices (0,0), (2,0), (2,2), (0,2)

Identifiquei um cisalhamento que suponho ser de fator 2 e uma transformação de escala, mas não consegui identificar a outra transformação e nem a matriz canônica.
Alguém poderia me auxiliar?
Anexos
transformação1.jpg
figura do exercício
transformação1.jpg (7.29 KiB) Exibido 1872 vezes
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Transformações

Mensagempor young_jedi » Seg Out 29, 2012 20:15

as transformações que eu visualizei são mudança de escala e cisalhamento, assim como voce.

então matriz transformação fica

\begin{bmatrix}2&1\\0&1/2\end{bmatrix}.\begin{bmatrix}x\\y\end{bmatrix}

subsitituindo os valores conferem todos, não encontrei nenhuma outra transformação
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Transformações

Mensagempor manuela » Qua Out 31, 2012 16:24

Então essa seria a matriz canônica do produto, né? E a da composição seria o resultado da multiplicação?
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Transformações

Mensagempor young_jedi » Qua Out 31, 2012 18:37

Sim a matriz da transformação de cisalhamento é

\begin{bmatrix} 1&\frac{1}{2} \\0&1 \end{bmatrix}

e a de transformação de escala

\begin{bmatrix}2&0\\0&1\end{bmatrix}

o produto das duas sera

\begin{bmatrix}2&0\\0&1\end{bmatrix}.\begin{bmatrix}1&\frac{1}{2}\\0&1\end{bmatrix}=\begin{bmatrix}2&1\\0&\frac{1}{2}\end{bmatrix}

no meu ver esta matriz, ja é a matriz canonica da composição das trasnformações
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.