por Rosana Vieira » Ter Mar 20, 2012 20:24
Dona Berenice quer aplicar R$ 80.000,00. Conseguiu encontrar um banco onde a taxa de juros da aplicação é de 0,91% a.m.. Use log2 = 0,3010 e log 1,0091 = 0,0039 .
a) Por quanto tempo o dinheiro deve ficar aplicado para que ela obtenha o dobro deste capital?
b) Se ela aplicasse outro valor, o período de tempo para ela conseguir o dobro do capital, seria alterado?
-
Rosana Vieira
- Usuário Parceiro

-
- Mensagens: 74
- Registrado em: Qui Nov 17, 2011 00:11
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por nakagumahissao » Seg Abr 30, 2012 22:24

QUESTÃO A - Para que o montente dobre de valor (R$ 160.000,00):

Usando logaritmos, temos que:


Agora, utilizando os dados fornecidos no enunciado, ou seja: log2 = 0,3010 e log 1,0091 = 0,0039, teremos então:

Portanto, para que o montante dobre de valor, serão necessários aproximadamente 6 anos, 5 Meses e 5 dias.
QUESTÃO B
Vejamos. Para dobrar-se qualquer valor v, teríamos:


Desta forma, podemos afirmar que para quaisquer valores, para que se dobre, o tempo necessário para que isto aconteça é o mesmo sempre para esta taxa.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por Fabiano Vieira » Seg Abr 30, 2012 23:24

Portanto, para que o montante dobre de valor, serão necessários aproximadamente 6 anos, 5 Meses e 5 dias.[/quote]
Qual o cálculo que você fez para achar os 6 anos, 5 meses e 5 dias, a partir do valor 77,18.
-
Fabiano Vieira
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Abr 16, 2012 23:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistema de Informação
- Andamento: cursando
por nakagumahissao » Ter Mai 01, 2012 01:16
Sendo t em Meses, o valor de t = 77,18 meses, ou seja:
Para sabermos quantos anos possuem 77,18 meses, dividimos por 12 meses, que representa um ano. Assim:
77,18 / 12 = 6,43166666, ou seja, 6 Anos. Retirando-se o 6 do número 6,4316666..., teremos:
6,431666... - 6 = 0,43166666 Anos (Menos de 1 ano)
Para sabermos quantos meses este valor representa, multiplicamos este resultado por 12 (1 ano possui 12 Meses). Desta forma:
0,4316666 x 12 = 5,1799992, ou seja, 5 Meses. Subtraindo-se 5 de 5,1799992, teremos:
5,1799992 - 5 = 0,1799992 Meses. De forma análoga, desta vez, para se saber a quantidade de dias em 0,1799992 meses, multiplicamos por 30 (média de dias em 1 mês), que finalmente, nos dará:
0,1799992 Meses x 30 = 5,399976 dias, o que equivale a aproximadamente 5 dias. O restante, 0,399976 foi ignorado.
Concluindo: 6 anos, 5 meses e 5 dias aproximadamente.
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por Fabiano Vieira » Ter Mai 01, 2012 18:05
Entendi! Muito obrigado, nakimahissao.
-
Fabiano Vieira
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Abr 16, 2012 23:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistema de Informação
- Andamento: cursando
por Fabiano Vieira » Qui Mai 03, 2012 10:26
Fabiano Vieira escreveu:
Portanto, para que o montante dobre de valor, serão necessários aproximadamente 6 anos, 5 Meses e 5 dias.
Qual o cálculo que você fez para achar aos 6 anos, 5 meses e 5 dias, a partir do valor 77,18.[/quote]
-
Fabiano Vieira
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Abr 16, 2012 23:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistema de Informação
- Andamento: cursando
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- MATEMÁTICA FINANCEIRA - Equivalência financeira
por ivolatanza » Ter Fev 28, 2017 15:33
- 0 Respostas
- 10070 Exibições
- Última mensagem por ivolatanza

Ter Fev 28, 2017 15:33
Matemática Financeira
-
- Matemática Financeira
por plugpc » Sáb Jun 13, 2009 16:58
- 0 Respostas
- 8928 Exibições
- Última mensagem por plugpc

Sáb Jun 13, 2009 16:58
Vestibulares
-
- matematica financeira
por Joziani » Qui Abr 22, 2010 23:18
- 1 Respostas
- 5894 Exibições
- Última mensagem por Molina

Sex Abr 23, 2010 00:07
Matemática Financeira
-
- matematica financeira
por dani chiazza » Ter Mai 18, 2010 15:32
- 1 Respostas
- 3839 Exibições
- Última mensagem por Nino Schnorr

Qua Mai 26, 2010 20:24
Matemática Financeira
-
- Matemática financeira
por Wiviane_1976 » Sex Mai 28, 2010 17:43
- 0 Respostas
- 3071 Exibições
- Última mensagem por Wiviane_1976

Sex Mai 28, 2010 17:43
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.