por thiago toledo » Qui Nov 10, 2011 15:59
Seja g uma função tal que g(1)=2, g'(1)=3 e g''(1)=8. Se f é uma função tal que

, calcule f''(1).
-
thiago toledo
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Set 13, 2011 18:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Ambiental
- Andamento: cursando
por LuizAquino » Qui Nov 10, 2011 16:21
thiago toledo escreveu:Seja g uma função tal que g(1)=2, g'(1)=3 e g''(1)=8. Se f é uma função tal que

, calcule f''(1).
Você já enviou essa questão em outro tópico:
viewtopic.php?f=120&t=6419Por favor, não duplique as suas mensagens.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por thiago toledo » Qui Nov 10, 2011 16:39
Eu sei disto, mas ninguém conseguiu me ajudar. Minha resolução ficou assim:
f'(x) = 4x³.g(x) + x^4 . g'(x)
f''(x) = 12x².g(x) + 4x³.g'(x) + 4x³.g'(x) + x^4 . g''(x)
esta correto, pois minha resposta não esta batendo com o gabarito que tem como resposta 40.
Minha resposta encontrada foi 56.
Alguém pode me dar uma luz?
-
thiago toledo
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Set 13, 2011 18:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Ambiental
- Andamento: cursando
por LuizAquino » Qui Nov 10, 2011 17:42
thiago toledo escreveu:Eu sei disto, mas ninguém conseguiu me ajudar.
Houve sim uma ajuda. Inclusive, foi indicado o procedimento que você usou na sua resolução.
thiago toledo escreveu:Minha resolução ficou assim:


esta correto, pois minha resposta não esta batendo com o gabarito que tem como resposta 40.
Minha resposta encontrada foi 56.
Note que no
outro tópico foi solicitado que você enviasse a sua resolução, mas você não enviou.
A solução está correta. O gabarito está errado.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 12552 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [derivada] derivada pela definição da secante
por TheKyabu » Sáb Out 27, 2012 23:24
- 2 Respostas
- 10879 Exibições
- Última mensagem por TheKyabu

Dom Out 28, 2012 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Com duas variáveis e derivada mista
por leticiaeverson » Dom Abr 22, 2018 00:39
- 3 Respostas
- 13186 Exibições
- Última mensagem por Gebe

Dom Abr 22, 2018 17:11
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]derivada de função de raiz cúbica
por armando » Sáb Jul 20, 2013 15:22
- 4 Respostas
- 14792 Exibições
- Última mensagem por armando

Dom Jul 21, 2013 22:17
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] DERIVADA POR DEFINIÇÃO DA RAIZ DO MÓDULO DE X
por Matheusgdp » Qua Set 16, 2015 04:07
- 2 Respostas
- 5111 Exibições
- Última mensagem por Matheusgdp

Qui Set 17, 2015 18:31
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.