por Anne2011 » Sex Set 16, 2011 16:26
Tô com problemas para chegar no resultado dessa integral:
![\frac{dv}{dt}=\frac{3}{t \sqrt[]{t²-1}} \frac{dv}{dt}=\frac{3}{t \sqrt[]{t²-1}}](/latexrender/pictures/d5cc0c10e0da7530d669bbf7db7d9a2f.png)
, t>1, v(2)=0
Integrando cheguei a esse resultado:


No livro, a resposta é

...
De onde raios saiu esse

e não consegui tirar essa  de dentro da raiz tbm não rsrsrs... Alguem poderia me ajudar???
-
Anne2011
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qui Jun 23, 2011 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecanica
- Andamento: cursando
por MarceloFantini » Sex Set 16, 2011 17:22
Talvez seja da condição inicial, pois na resolução da integral o resultado será

, mas com a condição você encontra o valor de K.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Anne2011 » Sex Set 16, 2011 17:48
A condição inicial é t>1, v(2)=0, substituindo o valor de t do resultado por 2 (e eu sou pessima em arcs), significa então que o resultado de K seria esse:

Uma conclusão lógica apenas, não faço a mais minima ideia de pq

...
Alguem aí com uma luz para mim???
-
Anne2011
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qui Jun 23, 2011 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecanica
- Andamento: cursando
por MarceloFantini » Sex Set 16, 2011 18:02
A função

lê-se "o arco cuja secante é t", ou seja, você tem um ângulo

tal que

. Vamos ao exercício para facilitar o entendimento: se

então

, mas

e daí

. O valor de

que satisfaz é

, e portanto

. Então, temos

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Anne2011 » Sex Set 16, 2011 18:53
Obrigado Fantini vou copiar isso, tô apanhando aqui com as integrais que envolvem os arcos... tenho que dedicar um tempo extra às relações trigonométricas.
-
Anne2011
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qui Jun 23, 2011 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecanica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Problemas de Valor Inicial] Equações Diferenciais
por mayconf » Ter Abr 15, 2014 18:24
- 1 Respostas
- 2009 Exibições
- Última mensagem por Russman

Ter Abr 15, 2014 22:28
Equações
-
- [Equação diferencial] Problema de valor inicial
por Aliocha Karamazov » Qua Fev 15, 2012 23:34
- 2 Respostas
- 1654 Exibições
- Última mensagem por Aliocha Karamazov

Qui Fev 23, 2012 23:43
Cálculo: Limites, Derivadas e Integrais
-
- Equações diferenciais - problema de valor inicial
por emsbp » Qui Abr 12, 2012 18:14
- 0 Respostas
- 954 Exibições
- Última mensagem por emsbp

Qui Abr 12, 2012 18:14
Cálculo: Limites, Derivadas e Integrais
-
- (calculo III) resolva o seguinte problema de valor inicial
por liviabgomes » Qui Dez 01, 2011 14:59
- 4 Respostas
- 2164 Exibições
- Última mensagem por liviabgomes

Seg Dez 05, 2011 11:36
Cálculo: Limites, Derivadas e Integrais
-
- Determinar a velocidade inicial
por alexandre32100 » Ter Mar 15, 2011 00:31
- 1 Respostas
- 2638 Exibições
- Última mensagem por Elcioschin

Ter Mar 15, 2011 14:38
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
função demanda
Autor:
ssousa3 - Dom Abr 03, 2011 20:55
alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear
Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato
Assunto:
função demanda
Autor:
ssousa3 - Seg Abr 04, 2011 14:30
Gente alguém por favor me ensine a calcular a fórmula da função demanda

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.