por moyses » Sáb Set 03, 2011 23:04
oi professor luiz tudo bem?

olha outro limite para você me ajdar e ver se eu to certo? eu tenho que calcula um exemplo de expressões de indeterminação matemática do tipo

! to com uma apostila de calculo aqui que eu baixei da net em um dos exemplos resolvidos desse tipo indeterminação matemática

ta assim :
![[tex]\lim_{x\rightarrow+\infty}=\frac{{x}^{5}+{3x}^{2}}{2x+1}=\lim_{x\rightarrow+\infty}=\frac{{x}^{5}\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2x\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}=\frac{x\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}\frac{x}{2}+\lim_{x\rightarrow+\infty}\frac{\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{\left(\frac{1}{2x} +1\right)} [tex]\lim_{x\rightarrow+\infty}=\frac{{x}^{5}+{3x}^{2}}{2x+1}=\lim_{x\rightarrow+\infty}=\frac{{x}^{5}\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2x\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}=\frac{x\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}\frac{x}{2}+\lim_{x\rightarrow+\infty}\frac{\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{\left(\frac{1}{2x} +1\right)}](/latexrender/pictures/358caf2998da5213c2bc20665699eb93.png)
[/tex] o resultado desse exemplo resolvido é !

a minha duvida é como resover esse exercio ultilizando a regra de deixar o termo de maior do denomindar e numerador em evidencia desse exercicio

usando essa regra de evidencia e as propriedade dos limites eu tentei resolve-lo mais não consigui tirar a indeterminação matematica!

a pergunta é estou fazendo a conta acima corretamente? por se eu continuar vai gerar outra indeterminação matematica! do tipo

e ai alguma sugestão ta certo rsrs dscupa to muito ancioso pro sua resposta

! desde já grato!
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por LuizAquino » Dom Set 04, 2011 15:03
moyses escreveu:oi professor luiz tudo bem?

olha outro limite para você me ajdar e ver se eu to certo?
A ideia de um fórum é que
todos possam ajudar. Por favor, não envie a sua mensagem direcionando para um usuário específico do fórum.
Quanto ao limite, usando a estratégia de colocar termos em evidência, o correto seria você ter feito:

Agora tente terminar de resolver o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por moyses » Seg Set 05, 2011 08:51
Porfessor eu entedi que senhor fez , o senhor deixou em evidência o maior termo certo ! o que eu não endenti nos exemplos da apostila e nesse tabem que o senhor me respondeu e de que: de onde o senhor tirou esse 1 ai que ta dentro do parentes da parte de cima do numerador!
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por moyses » Seg Set 05, 2011 08:54
e me descupe eu sei que todos ajudam mais quem me ajudo por enquanto foi só o senhor! por isso que eu perguntei diretamente a ti!

-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por LuizAquino » Seg Set 05, 2011 12:04
moyses escreveu:o que eu não endenti nos exemplos da apostila e nesse também que o senhor me respondeu e de que: de onde o senhor tirou esse 1 ai que ta dentro do parentes da parte de cima do numerador!
Veja que de forma conveniente podemos escrever (caso x não seja nulo):

moyses escreveu:e me descupe eu sei que todos ajudam mais quem me ajudo por enquanto foi só o senhor! por isso que eu perguntei diretamente a ti!

Ok. Mas da próxima vez não repita esse procedimento.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por moyses » Seg Set 05, 2011 12:33
então tuda vez que o x não for nulo pode fazer isso?
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por LuizAquino » Seg Set 05, 2011 12:37
moyses escreveu:então tuda vez que o x não for nulo pode fazer isso?
É claro.
Apenas lembrando, veja que se x fosse nulo, então não poderíamos ter escrito a fração

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por moyses » Qui Set 08, 2011 12:09
por que fica nessa conta que você fez


e não


como tava na conta original?
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por moyses » Qui Set 08, 2011 12:11
descupa eu errei ai! rsrs de novo: perguntando para todo mundo: por que fica

e não isso

?
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por moyses » Qui Set 08, 2011 13:58
ahh !

descobri por que é por que a expressão foi fatorado não é?
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites]Tendendo a mais e a menos infinito
por Brunorp » Sex Abr 03, 2015 12:42
- 1 Respostas
- 1410 Exibições
- Última mensagem por adauto martins

Sex Abr 03, 2015 21:28
Cálculo: Limites, Derivadas e Integrais
-
- Limite com x tendendo ao infinito
por PeterHiggs » Ter Mar 04, 2014 16:53
- 2 Respostas
- 3734 Exibições
- Última mensagem por PeterHiggs

Ter Mar 04, 2014 23:08
Cálculo: Limites, Derivadas e Integrais
-
- Determinar o limite tendendo ao infinito.
por Arthur_Bulcao » Sex Mar 23, 2012 17:34
- 6 Respostas
- 5085 Exibições
- Última mensagem por Arthur_Bulcao

Qua Mar 28, 2012 19:08
Cálculo: Limites, Derivadas e Integrais
-
- Limite: Cosseno(x) e Seno(x) com X tendendo a infinito
por lucasguilherme2 » Qui Mai 24, 2012 11:49
- 3 Respostas
- 44251 Exibições
- Última mensagem por LuizAquino

Ter Mai 29, 2012 11:54
Cálculo: Limites, Derivadas e Integrais
-
- (Limite) tendendo a - infinito com raiz cúbica
por kAKO » Qui Mai 07, 2015 12:18
- 1 Respostas
- 4304 Exibições
- Última mensagem por adauto martins

Sáb Mai 09, 2015 15:46
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.