por phvicari » Sáb Set 03, 2011 04:40
Olá pessoal, tudo bem?
Esse é meu primeiro tópico, então desculpe qualquer erro...
Gostaria de pedir ajuda a vocês para resolver esse exercício:

, Com

variando de:

I) Encontrar

II) Encontrar o mínimo de

Obrigado desde já...
Editado pela última vez por
phvicari em Sáb Set 03, 2011 16:30, em um total de 1 vez.
-
phvicari
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sáb Set 03, 2011 04:25
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ensino Médio
- Andamento: cursando
por MarceloFantini » Sáb Set 03, 2011 15:52
Quais foram suas tentativas?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por phvicari » Sáb Set 03, 2011 21:06
Na verdade estou com duvida em como começar a resolver, porque pelo que eu entendi o

e o

variam entre 0 e 2, mas a função em si, depende do parâmetro

e não do

, por isso fiquei meio confuso em resolver esse exercício.
OBS: a resposta que preciso chegar é

-
phvicari
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sáb Set 03, 2011 04:25
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ensino Médio
- Andamento: cursando
por LuizAquino » Dom Set 04, 2011 13:30
Veja que no integrando há uma função modular. Precisamos então analisar o módulo.
O exercício informa que

.
Se a = 0, veja que não importa o valor de x teremos que

.
Desse modo, teremos que:
Considere agora que

.
Aplicando a definição de módulo no integrando, temos que:

Analisando o sinal de x(x - a), lembrando-se que estamos considerando

, temos que

Isso significa que podemos reescrever a integral como:

Agora tente terminar o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Preciso de ajuda com esse exercício
por Dankaerte » Qui Set 10, 2009 19:10
- 2 Respostas
- 6158 Exibições
- Última mensagem por Elcioschin

Ter Abr 13, 2010 14:01
Matrizes e Determinantes
-
- Preciso entender como deu esse resultado!
por Adrielly » Qui Fev 11, 2010 11:26
- 4 Respostas
- 2187 Exibições
- Última mensagem por rojantsch

Sex Fev 19, 2010 12:56
Álgebra Elementar
-
- [Derivadas/Integrais] Ajuda com 5 questões de cálculo
por matheuskns » Sex Nov 28, 2014 20:27
- 1 Respostas
- 1739 Exibições
- Última mensagem por Cleyson007

Sáb Nov 29, 2014 20:40
Cálculo: Limites, Derivadas e Integrais
-
- Preciso saber a fórmula para resolver esse exercício
por Dankaerte » Qui Ago 27, 2009 14:19
- 1 Respostas
- 6848 Exibições
- Última mensagem por Molina

Qui Ago 27, 2009 14:58
Geometria Plana
-
- Preciso de uma explicação passo a passo para esse exercício
por Dankaerte » Qui Ago 27, 2009 14:24
- 0 Respostas
- 2188 Exibições
- Última mensagem por Dankaerte

Qui Ago 27, 2009 14:24
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.