por leandro_aur » Sáb Ago 13, 2011 16:14
Galera, bom dia.
Eu não estou conseguindo provar o que pede aqui no livro. Será que alguém poderia dar uma olhada?
(Stewart - Cálculo 2 volume 6 pág 899, Exercício 23)
Se

, mostre que

.
Será que alguém poderia me ajudar?
Abraços
-
leandro_aur
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Out 24, 2010 17:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencia e Tecnologia
- Andamento: cursando
por LuizAquino » Sáb Ago 13, 2011 20:39
Muito provavelmente você está se atrapalhando com as derivadas parciais.
Envie a sua resolução para que possamos identificar o problema.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por leandro_aur » Sáb Ago 13, 2011 20:50
Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.
-
leandro_aur
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Out 24, 2010 17:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencia e Tecnologia
- Andamento: cursando
por LuizAquino » Sáb Ago 13, 2011 21:23
leandro_aur escreveu:Olá, creio que não, pois joguei a derivada no wolfram e bateu com a minha, queria conferir com alguém se tem inconsistencia no exercício mesmo.
Não há inconsistência no exercício.
Temos que:


Somando as duas últimas equações:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problemas Quentes do Livro do James Stewart
por ARCS » Dom Fev 12, 2012 00:11
- 1 Respostas
- 3635 Exibições
- Última mensagem por fraol

Dom Fev 12, 2012 10:44
Cálculo: Limites, Derivadas e Integrais
-
- Teorema de Stewart - 2ª Fórmula
por matheus_frs1 » Dom Nov 02, 2014 19:54
- 3 Respostas
- 2532 Exibições
- Última mensagem por Russman

Seg Nov 03, 2014 00:10
Geometria Plana
-
- Possível erro de digitação no Stewart 5ª edição!
por ravi » Sex Jan 18, 2013 03:11
- 2 Respostas
- 2961 Exibições
- Última mensagem por ravi

Sex Jan 18, 2013 13:15
Cálculo: Limites, Derivadas e Integrais
-
- livro de matemática
por DanielFerreira » Sex Mar 26, 2010 12:54
- 1 Respostas
- 3211 Exibições
- Última mensagem por Cleyson007

Sex Mar 26, 2010 17:23
Piadas
-
- PA Livro de Dante
por Joana Gabriela » Seg Ago 09, 2010 10:37
- 1 Respostas
- 3047 Exibições
- Última mensagem por Cleyson007

Seg Ago 09, 2010 14:40
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.