• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Jul 19, 2011 19:49

\lim_{x\rightarrow4}\frac{\sqrt[]{x}-2}{x-4}

Talvez estou errando nos cálculos. Mas sem utilizar L'Hospital, utilizando métodos algébricos eu só cheguei em indeterminação \frac{0}{0}.

Cheguei a multiplicar o numerador e o denominador por x+4 e encontrei \frac{4}{0}

Depois tentei multiplicando o numerador e o numerador por \sqrt[]{x}+2 e encontrei \frac{0}{0}

Alguém explica este exercício?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Ter Jul 19, 2011 21:02

Olá Claudin,

Observe que x-4=(\sqrt{x}-2)(\sqrt{x}+2)

Agora tente resolver, caso tenha dificuldades, poste novamente.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 00:23

Ficaria assim Filipe?

\lim_{x\rightarrow4}\frac{\sqrt[]{x}-2}{x-4}

\lim_{x\rightarrow4}\frac{\sqrt[]{x}-2}{x-4}. \frac{\sqrt[]{x}+2}{\sqrt[]{x}+2}

\lim_{x\rightarrow4}\frac{1}{\sqrt[]{x}+2}\Rightarrow \frac{1}{\sqrt[]{4}+2}= \frac{1}{4}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 00:23

Só pra constar, ajudas desse modo são muito mais construtivas Filipe

Muito obrigado. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qua Jul 20, 2011 09:23

Claudin escreveu:Só pra constar, ajudas desse modo são muito mais construtivas Filipe

E note que ele não resolveu o exercício! Ele apenas lhe deu uma dica para você mesmo conseguir fazer (o que é muito melhor para o seu aprendizado).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor giulioaltoe » Qua Jul 20, 2011 09:24

voce também poderia fazer por mudança de variaveis! colocando {x=y^2} assim o y ia tender 2 lim_{y\to2}\frac{(y-2)}{(y-2)(y+2)} = \lim_{y\to2}\frac{1}{y+2} = \frac{1}{4}
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 11:12

Mas foi uma dica, em que, utilizou a teoria e parte da prática, não foi uma dica "seca". E foi muito proveitoso para meus estudos.

Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qua Jul 20, 2011 11:31

Claudin escreveu:Mas foi uma dica, em que, utilizou a teoria e parte da prática, não foi uma dica "seca". E foi muito proveitoso para meus estudos.


Apenas por curiosidade, na sua opinião, qual é a diferença entre essa dica e a que foi dada, por exemplo, no tópico abaixo?

Re: Limite
viewtopic.php?f=120&t=5290&#p17976
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qua Jul 20, 2011 11:33

São equivalentes. :y:
Mas em alguns casos mais complexos nem com a dica o aluno que possui a dúvida chega ao resultado e quando retorna ao tópico ele recebe mais dicas, em vez da solução para ajudar nos estudos.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: