• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral definida de uma função contínua

Integral definida de uma função contínua

Mensagempor Janoca » Qua Jun 18, 2014 15:27

Sabe-se que a integral definida de uma função contínua, no intervalo [a, b] é nula. Pode-se concluir que:
a) A função é nula em [a, b];
b) A função tem um ponto crítico em [a, b];
c) A função não é crescente em [a, b];
d) Existe pelo menos um ponto c \in [a, b] tal que, a função se anula em c;
e) Nada se pode afirmar.


Gostaria de entender o porque de cada questão falsa, como o porque da resposta correta.

Obrigada
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Integral definida de uma função contínua

Mensagempor e8group » Qua Jun 18, 2014 16:40

a) Falso :

Seja f qualquer função contínua em [a,b] ( e portanto integrável sobre este intervalo) .
Suponha \int_{a}^{b} f(x) dx = L .Defina g (x) =  (b-a)f(x)   - L . Note que g também é continua em [a,b] e \int_{a}^{b}  g(x) dx = (b-a) \int_{a}^{b} f(x)dx  dx +  \int_{a}^{b} L dx   =  (b-a)L - (b-a)L  = 0 mas nem sempre g(x) = 0 .

Exemplificando :

Dado f(x) = x ; g(x) = (b-a) x -  \frac{(b-a)(a+b)}{2}  = b-a (x - \frac{a+b}{2}) desde que o intervalo não é degenerado , g(x) = 0 sse x = (a+b)/2


(b) Falso :

A função admite candidatos extremantes locais se para um subintervalo de [a,b] ela não é estritamente monótona em tal subintervalo . Por que seja fosse estritamente monótona ; das duas uma f'(x) < 0 ou f'(x) > 0 levando em conta que ela é diferenciável no aberto contido em [a,b] .

Exemplo : Se f(x)  =  x^{3}  + x , g(x) = (b-a) (x^3 +x) - L

g'(x)   =  (b-a)(3 x^2 +1) > 0 para todo x em [a,b] ; logo não admite pontos críticos .

(c) Por (b) g é crescente . ; logo afirmação falsa .

(d) Verdadeiro .

Suponha que não exista c em [a,b] tal que f(c) = 0 .Então , f(x) > 0 para todo x em [a,b] ou f(x) < 0 x em [a,b] . (Pois , se tivéssemos f(x_0) f(x_1) < 0 com x_0 \neq x_1 ;como f é continua em pelo TVI teríamos um c entre x_1 e x_0 tq f(c) = 0 ) .

Se f(x) > 0 em [a,b] então \int_a^b f(x) dx >     \int_a^b 0 dx = 0 (monotonicidade da intergral )

Se f(x) < 0 em [a,b] então \int_a^b f(x) dx <  \int_a^b 0 dx = 0 (monotonicidade da intergral )

Portanto a suposição é falsa .

É isto ; desculpe , estou com pressa e digitei na correria , bem provável alguns erros de digitação .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral definida de uma função contínua

Mensagempor e8group » Qui Jun 19, 2014 12:54

Só uma observação :

NO item (b) quando eu me refiro subintervalo lê-se subintervalo aberto de [a,b] .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.