• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral definida de uma função contínua

Integral definida de uma função contínua

Mensagempor Janoca » Qua Jun 18, 2014 15:27

Sabe-se que a integral definida de uma função contínua, no intervalo [a, b] é nula. Pode-se concluir que:
a) A função é nula em [a, b];
b) A função tem um ponto crítico em [a, b];
c) A função não é crescente em [a, b];
d) Existe pelo menos um ponto c \in [a, b] tal que, a função se anula em c;
e) Nada se pode afirmar.


Gostaria de entender o porque de cada questão falsa, como o porque da resposta correta.

Obrigada
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Integral definida de uma função contínua

Mensagempor e8group » Qua Jun 18, 2014 16:40

a) Falso :

Seja f qualquer função contínua em [a,b] ( e portanto integrável sobre este intervalo) .
Suponha \int_{a}^{b} f(x) dx = L .Defina g (x) =  (b-a)f(x)   - L . Note que g também é continua em [a,b] e \int_{a}^{b}  g(x) dx = (b-a) \int_{a}^{b} f(x)dx  dx +  \int_{a}^{b} L dx   =  (b-a)L - (b-a)L  = 0 mas nem sempre g(x) = 0 .

Exemplificando :

Dado f(x) = x ; g(x) = (b-a) x -  \frac{(b-a)(a+b)}{2}  = b-a (x - \frac{a+b}{2}) desde que o intervalo não é degenerado , g(x) = 0 sse x = (a+b)/2


(b) Falso :

A função admite candidatos extremantes locais se para um subintervalo de [a,b] ela não é estritamente monótona em tal subintervalo . Por que seja fosse estritamente monótona ; das duas uma f'(x) < 0 ou f'(x) > 0 levando em conta que ela é diferenciável no aberto contido em [a,b] .

Exemplo : Se f(x)  =  x^{3}  + x , g(x) = (b-a) (x^3 +x) - L

g'(x)   =  (b-a)(3 x^2 +1) > 0 para todo x em [a,b] ; logo não admite pontos críticos .

(c) Por (b) g é crescente . ; logo afirmação falsa .

(d) Verdadeiro .

Suponha que não exista c em [a,b] tal que f(c) = 0 .Então , f(x) > 0 para todo x em [a,b] ou f(x) < 0 x em [a,b] . (Pois , se tivéssemos f(x_0) f(x_1) < 0 com x_0 \neq x_1 ;como f é continua em pelo TVI teríamos um c entre x_1 e x_0 tq f(c) = 0 ) .

Se f(x) > 0 em [a,b] então \int_a^b f(x) dx >     \int_a^b 0 dx = 0 (monotonicidade da intergral )

Se f(x) < 0 em [a,b] então \int_a^b f(x) dx <  \int_a^b 0 dx = 0 (monotonicidade da intergral )

Portanto a suposição é falsa .

É isto ; desculpe , estou com pressa e digitei na correria , bem provável alguns erros de digitação .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral definida de uma função contínua

Mensagempor e8group » Qui Jun 19, 2014 12:54

Só uma observação :

NO item (b) quando eu me refiro subintervalo lê-se subintervalo aberto de [a,b] .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}