por Justiceira » Sáb Out 31, 2009 19:52
![\int_\left(\frac{x^3+2x^4}{\sqrt[]{x}} \right)dx \int_\left(\frac{x^3+2x^4}{\sqrt[]{x}} \right)dx](/latexrender/pictures/a0cafb7782183cff35bb5a534a44875f.png)
Como um colega do proprio forum ensinou eu fiz isso
![\int_{}^{}\frac{x^3}{\sqrt[]{x}} dx + \int_{}^{}\frac{2x^4}{\sqrt[]{x}} dx \int_{}^{}\frac{x^3}{\sqrt[]{x}} dx + \int_{}^{}\frac{2x^4}{\sqrt[]{x}} dx](/latexrender/pictures/b86671707f8f30806d57b6d1bd5b5d86.png)
Mas não sei se fiz certo o restante pois o result saiu muito estranho
Dizem q da pra derivar depois o resultado da integral e chegar a um resultado que seria essa integral acima.
Obrigada!

-

Justiceira
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Set 27, 2009 12:26
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por Molina » Sáb Out 31, 2009 20:19
Outra dica:

Agorafica fácil, né?

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Molina » Seg Nov 23, 2009 21:06
Ninha escreveu:Em poucos meses, acho que 90% dos meus posts estarão nas pérolas..'-'
Eu não saquei..'-'
E olha que meu amigo me ensinou a fazer isso hoje
T.T
Cara..tudo bem, a primeira parte tranquilasso.. mas, e o que voce fez com a outra? Tpw ...
(Desconsiderem aquelas barras ali...=o ]
. . . . . . . .
||____________||A parte que eu selecionei acima, o que houve com ela? Oo
Boa noite, Ninha.
Com a segunda parte você vai fazer a mesma coisa:

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral indefinida - como integrar essa função?
por vinik1 » Seg Dez 05, 2011 15:53
- 2 Respostas
- 2788 Exibições
- Última mensagem por vinik1

Seg Dez 05, 2011 16:27
Cálculo: Limites, Derivadas e Integrais
-
- Como resolvo essa equação?
por LuizCarlos » Seg Jul 25, 2011 14:07
- 8 Respostas
- 4683 Exibições
- Última mensagem por LuizCarlos

Ter Jul 26, 2011 00:04
Sistemas de Equações
-
- Como eu resolvo essa questão
por diegoconain5 » Qua Jul 16, 2014 18:53
- 0 Respostas
- 1137 Exibições
- Última mensagem por diegoconain5

Qua Jul 16, 2014 18:53
Equações
-
- Ajudem-me. Como resolvo essa matriz.?
por danielvale28 » Ter Ago 11, 2009 08:55
- 2 Respostas
- 2387 Exibições
- Última mensagem por Cleyson007

Ter Ago 11, 2009 15:57
Matrizes e Determinantes
-
- Como resolvo essa função? ALGUÉM SABE?
por Kelvin Brayan » Qua Mai 25, 2011 13:12
- 3 Respostas
- 2585 Exibições
- Última mensagem por Kelvin Brayan

Qui Mai 26, 2011 10:58
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.