• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite com Módulo

Limite com Módulo

Mensagempor Man Utd » Sex Mai 10, 2013 10:45

Calcule:\lim_{x\rightarrow 0}\frac{|2x-1|-|2x+1|}{x}

gabarito:-4

eu não entendi a questão,já resolvi vários limites, mas com somente um módulo,alguém pode me dar uma dica?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Limite com Módulo

Mensagempor e8group » Sex Mai 10, 2013 11:36

Bom dia .Basta utilizar a definição de módulo ,conhece ela ? Se não ,suponhamos que temos o seguinte módulo : |f(x)| ,onde f é uma função elementar .Por definição de módulo , segue-se que |f(x)| = \begin{cases} f(x) ;  f(x) \geq 0 \\ -f(x) < 0  ;  f(x) < 0  \end{cases} .

No exercício postado tente analisar o sinal de 2x-1 e 2x+1 para x em uma vizinhança do número zero .Se nesta vizinhança ,tem-se 2x-1 < 0 ,segue da definição que |2x-1|  =  - (2x-1) > 0 .De forma análoga podemos estudar o outro módulo .Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite com Módulo

Mensagempor Man Utd » Sex Mai 10, 2013 12:00

olá eu não entendi bem qual usar:

|2x-1|=\begin{cases}2x-1,2x-1\geq 0 \\ -(2x-1), 2x-1<0 \end{cases}

|2x+1|=\begin{cases}2x+1,2x+1\geq 0 \\ -(2x+1), 2x+1<0 \end{cases}

eu ñ sei qual usar,ñ teria q fazer o limite pela direita e pela esquerda?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Limite com Módulo

Mensagempor e8group » Sex Mai 10, 2013 12:27

Basta observar se o número 2x-1 é negativo ou positivo para x em (-r,r) [tex] com [tex] r > 0 suficiente pequeno . Da mesma forma façamos a mesma análise para 2x+1 .

Claramente 2x-1 < 0 , \forall x \in(-r,r) e 2x+1 > 0 ,  \forall x \in(-r,r) .

Assim ,neste contexto : |2x-1| - |2x+1|  =  - (2x-1) - (2x+1) .

Estou sem tempo agora .A noite posso postar mais dicas se necessário ..
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite com Módulo

Mensagempor Man Utd » Sex Mai 10, 2013 23:46

santhiago obrigado pela paciência,mas eu não compreendo o porquê desse procedimento,já calculei limites com um só módulo,mas é diferente.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Limite com Módulo

Mensagempor e8group » Sáb Mai 11, 2013 01:40

Vamos tentar novamente . Tome f (x) =|2x-1| - |2x+1| .

Observe que por definição de módulo :

|2x-1| = \begin{cases} 2x-1  ;   x \in   A_1 =[1/2,+\infty) \\ -(2x-1); x\in A_2 =(-\infty,1/2) \end{cases}

e

|2x+1| = \begin{cases} 2x+1  ;   x \in B_1 =[-1/2,+\infty) \\ -(2x+1); x\in B_2=(-\infty,-1/2) \end{cases}

Considere os 4 casos :

1) 2x-1\geq 0 e 2x+1 \geq 0

2) 2x-1 < 0 e 2x+1 < 0

3) 2x-1 < 0 e 2x+1 \geq 0

4) 2x-1 \geq 0 e 2x+1 < 0

No primeiro caso , tem-se necessariamentex\in A_1 \wedge  x\in B_1  \iff  x \in A_1 \cap B_1 \iff x \in A_1 = [1/2,+\infty) ,no segundo , x \in A_2 \wedge x \in B_2  \iff x\in A_2\cap B_2  \iff x \in B_2 =(-\infty,-1/2) ; terceiro ,segue x\in A_2 \wedge x\in B_1 \iff x\in A_2 \cap  B_1 \iff x \in [-1/2,1/2) e no último caso , a interseção é vazia .

Assim , f(x) = \begin{cases}2x-1 - (2x+1) = -2  ;  x\in [1/2,+\infty) \\  -(2x-1) + (2x+1) = 2 ;  x \in (-\infty,-1/2)  \\ -(2x-1) -(2x+1) = -4x ;  x \in [-1/2,1/2) \end{cases} .

Tudo isto é desnecessário para calcular o limite,entretanto como vc estar com dificuldades com soma de módulos(se é assim que podemos dizer ) .Caso teríamos, f(x) =  |f_1(x)| + \hdots + |f_n(x) | .Por definição de módulo , por exemplo se f_i(x) \geq 0 para todo x \in A_i   (i=1,\hdots,n ) .Poderíamos definir ,

f(x) = f_1(x) + \hdots +  f_n(x)   ;  x \in A_1 \cap \hdots A_n = \bigcap_{i=1}^n A_i

Dica : Estude mais sobre módulos e operações com funções se for necessário .

Comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite com Módulo

Mensagempor Man Utd » Sáb Mai 11, 2013 14:29

Muito obrigado pela paciência Santhiago,agora finalmente conseguir entender. :)
vou dar uma revisada em módulo.Bom final de semana. :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?