• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Lim envolvendo raizes

Lim envolvendo raizes

Mensagempor Erick » Dom Mar 17, 2013 13:30

Estou tentando resolver o seguinte limite: \lim_{x->2}\frac{\sqrt[3]{x}-\sqrt[3]{2}}{x-2} , mas estou tendo problemas para utilizar a formula de {a}^{3}-{b}^{3}=(a-b)*(a^2+ab+b^2) pois eu pesquisei em outros locais mas eles resolvem apenas deixando a parte de baixo (x-2) como a de cima. Estou em duvida se posso resolver a parte de cima ao inves da parte de baixo e se qnd for "simplificar" eu devo sempre colocar a \sqrt[3]{x} ou somente\sqrt{x} para "a".
Ou seja, devo resolver fazendo assim:\sqrt[3]{x}-\sqrt[3]{2}=........ ou apenas assim \sqrt{x}-\sqrt{2}=.....

Nao sei se vcs entenderam a pergunta e peço desculpas se postei em local errado ou com tema incorreto. Grato desde ja
Erick
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mar 17, 2013 13:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Lim envolvendo raizes

Mensagempor e8group » Dom Mar 17, 2013 14:32

Observe que x - 2 =  (x^3)^{1/3} - (2^3)^{1/3}  =  (\sqrt[3]{x})^3 - (\sqrt[3]{2})^3 .

Sabemos que a^3 - b^3 = (a-b)(a^2 + ab  + b^2 ) .Substituindo-se a = \sqrt[3]{x} e b = \sqrt[3]{2} obtemos


(\sqrt[3]{x})^3 - (\sqrt[3]{2})^3 =  (\sqrt[3]{x} - \sqrt[3]{2} )( [\sqrt[3]{x}]^2 + \sqrt[3]{x} \cdot \sqrt[3]{2} + (\sqrt[3]{2})^2) .

Ou seja , x - 2 =  (\sqrt[3]{x} - \sqrt[3]{2} )( [\sqrt[3]{x}]^2 + \sqrt[3]{x} \cdot \sqrt[3]{2} + (\sqrt[3]{2})^2) .

Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Lim envolvendo raizes

Mensagempor Erick » Dom Mar 17, 2013 14:42

Eu estava com exatamente esta duvida. Agr eu entendi, mt obrigado
Erick
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mar 17, 2013 13:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}