• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Lim envolvendo raizes

Lim envolvendo raizes

Mensagempor Erick » Dom Mar 17, 2013 13:30

Estou tentando resolver o seguinte limite: \lim_{x->2}\frac{\sqrt[3]{x}-\sqrt[3]{2}}{x-2} , mas estou tendo problemas para utilizar a formula de {a}^{3}-{b}^{3}=(a-b)*(a^2+ab+b^2) pois eu pesquisei em outros locais mas eles resolvem apenas deixando a parte de baixo (x-2) como a de cima. Estou em duvida se posso resolver a parte de cima ao inves da parte de baixo e se qnd for "simplificar" eu devo sempre colocar a \sqrt[3]{x} ou somente\sqrt{x} para "a".
Ou seja, devo resolver fazendo assim:\sqrt[3]{x}-\sqrt[3]{2}=........ ou apenas assim \sqrt{x}-\sqrt{2}=.....

Nao sei se vcs entenderam a pergunta e peço desculpas se postei em local errado ou com tema incorreto. Grato desde ja
Erick
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mar 17, 2013 13:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Lim envolvendo raizes

Mensagempor e8group » Dom Mar 17, 2013 14:32

Observe que x - 2 =  (x^3)^{1/3} - (2^3)^{1/3}  =  (\sqrt[3]{x})^3 - (\sqrt[3]{2})^3 .

Sabemos que a^3 - b^3 = (a-b)(a^2 + ab  + b^2 ) .Substituindo-se a = \sqrt[3]{x} e b = \sqrt[3]{2} obtemos


(\sqrt[3]{x})^3 - (\sqrt[3]{2})^3 =  (\sqrt[3]{x} - \sqrt[3]{2} )( [\sqrt[3]{x}]^2 + \sqrt[3]{x} \cdot \sqrt[3]{2} + (\sqrt[3]{2})^2) .

Ou seja , x - 2 =  (\sqrt[3]{x} - \sqrt[3]{2} )( [\sqrt[3]{x}]^2 + \sqrt[3]{x} \cdot \sqrt[3]{2} + (\sqrt[3]{2})^2) .

Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Lim envolvendo raizes

Mensagempor Erick » Dom Mar 17, 2013 14:42

Eu estava com exatamente esta duvida. Agr eu entendi, mt obrigado
Erick
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mar 17, 2013 13:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.