por e8group » Sex Mar 15, 2013 22:03
Faça a seguinte substituição ,

.Assim , quando

;logo ,
De

e

,obtemos

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Douglas16 » Sex Mar 15, 2013 23:13
Valeu santhiago, mas gostaria de saber se você já encontrou a resolução na primeira observação da questão, ou fez mais de uma observação (tentativa) até concluir qual a forma correta para resolver?
Tipo, quero saber qual o raciocínio que você usou para começar a resolver o limite.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Sáb Mar 16, 2013 00:07
A observação que você tem que nota é que

.
Para

muito grande (em módulo ) ,

se aproxima de zero .Por este motivo é conveniente a mudança de variável conforme postei acima ; logo ,o resultado do limite segue de imediato do limite fundamental trigonométrico e pelo fato que

quando

ou

quando

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Douglas16 » Sáb Mar 16, 2013 10:49
Então, minha pergunta foi mais para aprender como as outras pessoas se posicionam diante de uma questão assim.
Tipo, eu por exemplo muitas vezes, quando fui resolver um problema, procuro deixar de me focar em uma só possível forma de começar, para pensar em quantas formas eu puder encontrar e, assim avaliar qual é a melhor e correta forma de resolver a questão, só depois disso eu procuro colocar a "mão na massa". Por exemplo se pensei numa forma de resolver, primeiro desenvolver mentalmente a resolução para depois, caso ela aparentar nenhum erro de lógica, aí sim desenvolver no papel.
Foi isso que eu quis dizer como minha última dúvida.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Identidade Trigonometrica
por MERLAYNE » Ter Abr 24, 2012 19:40
- 4 Respostas
- 2307 Exibições
- Última mensagem por DanielFerreira

Ter Abr 24, 2012 20:12
Trigonometria
-
- [Trigonometria] Identidade trigonometrica
por Alvadorn » Sáb Ago 13, 2011 17:47
- 2 Respostas
- 1784 Exibições
- Última mensagem por Alvadorn

Sáb Ago 13, 2011 20:27
Trigonometria
-
- identidade trigonométrica fundamental
por zenildo » Qui Jun 27, 2013 20:21
- 1 Respostas
- 1401 Exibições
- Última mensagem por young_jedi

Sex Jun 28, 2013 11:22
Trigonometria
-
- [Limite] função trigonométrica
por rafaelbr91 » Ter Mar 27, 2012 17:51
- 2 Respostas
- 2065 Exibições
- Última mensagem por rafaelbr91

Ter Mar 27, 2012 18:43
Cálculo: Limites, Derivadas e Integrais
-
- Limite de uma função trigonométrica
por Douglas16 » Seg Mar 11, 2013 14:45
- 1 Respostas
- 1317 Exibições
- Última mensagem por Douglas16

Seg Mar 11, 2013 15:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.