A resposta no livro do Guidorozzi é 0.
Já fiz uma mudança de Variável
![u = {e}^{{x}^{2}} - 1, \Rightarrow x = \sqrt[2]{Ln\left(u+1 \right)} u = {e}^{{x}^{2}} - 1, \Rightarrow x = \sqrt[2]{Ln\left(u+1 \right)}](/latexrender/pictures/afd4b8097237b3778caef9272066b225.png)

![\lim_{u\rightarrow0} = \frac{u}{\sqrt[2]{Ln\left(u+1 \right)}} \lim_{u\rightarrow0} = \frac{u}{\sqrt[2]{Ln\left(u+1 \right)}}](/latexrender/pictures/11c9965c82be6e19daa69f909751be08.png)
Eu cheguei um pouco mais longe, mas é complicado por aqui no site...
Se puderem me explicar, Agradeço..

Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante