• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite + algarismo de Euler = ????

Limite + algarismo de Euler = ????

Mensagempor EulaCarrara » Seg Abr 19, 2010 21:29

Alguém poderia me auxiliar nesse exercicio, por favor?

Imagem
(onde tem-se o simbolo de "+", lê-se: ''pela direita'')

Obrigada :)
Abraços!
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Limite + algarismo de Euler = ????

Mensagempor EulaCarrara » Seg Abr 19, 2010 21:53

*-)
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Limite + algarismo de Euler = ????

Mensagempor MarceloFantini » Seg Abr 19, 2010 22:01

Vamos analisar tg t. Quando t se aproxima de \frac {\pi} {2} pela direita, os valores vão decrescendo vertiginosamente, tornando a tangente um número extremamente pequeno e negativo. Isso é importante, pois a^{-b} = \frac {1} {a^b}, fazendo com que o limite seja \frac {1} {e}, onde e é elevado a um número muito grande, e dessa maneira o denominador cresce de maneira descontrolada, obrigando a fração a se tornar um valor cada vez mais próximo de zero. Assim:

lim_{x \rightarrow (\frac {\pi} {2})^+} e^{tg x} = 0
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite + algarismo de Euler = ????

Mensagempor EulaCarrara » Seg Abr 19, 2010 22:07

Não entendi a parte do a^b = e...

1/(a^b) = 1/e -- (1 sobre A elevado a B = 1 sobre E)

É regra?
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Limite + algarismo de Euler = ????

Mensagempor EulaCarrara » Seg Abr 19, 2010 22:13

Ah sim.. agora entendi.
como E está elevado a tg t e tgt é um numero grande e pequeno, entao E estará elevado a este..

Muito obrigada Fantini :)
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Limite + algarismo de Euler = ????

Mensagempor MarceloFantini » Seg Abr 19, 2010 23:11

Que bom, mas eu quis dizer que a propriedade é que a^{-b} = \frac {1} {a^b}, que no caso do exercício, era e.

Fico feliz de ter ajudado
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}