por uchihacx » Qui Dez 17, 2015 00:23

(x^k - a^k ) = 0
-
uchihacx
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Dez 17, 2015 00:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: cursando
por e8group » Sex Dez 18, 2015 22:46
Se ,

é fácil verificar o resultado . No caso geral , em que k é um natural qualquer

,fatore x^k - a^k ( divida o polinômio x^k - a^k por x-a ) . Feito isto , vamos poder escrever x^k - a^k como (x-a) q(x) , onde q(x) é um polinômio de grau k-1 . Em seguida ,note o seguinte , ao trabalharmos com x próximo de a , podemos majorar |x| (e.g . por 1 + |a| ) , e consequentemente teremos |q(x)| < M (p algum M > 0 ) . Dai vem :
|x^k - a^k| = |x-a| |q(x)| < M |x-a|
O segundo membro da desigualdade acima pode ficar arbitrariamente pequeno o que estabilizara o resultado .
Note que neste fórum tal questão já foi resolvida , onde há uma discussão mais detalhada .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] como essa divisão foi simplificada?
por GandalfOAzul » Sáb Set 14, 2019 01:21
- 5 Respostas
- 10411 Exibições
- Última mensagem por GandalfOAzul

Qua Set 18, 2019 12:01
Cálculo: Limites, Derivadas e Integrais
-
- Provar - Limites
por Cleyson007 » Sáb Abr 28, 2012 17:11
- 1 Respostas
- 1275 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 15:42
Cálculo: Limites, Derivadas e Integrais
-
- Limite Notável-Como provar?
por joaofonseca » Dom Out 30, 2011 20:19
- 4 Respostas
- 4067 Exibições
- Última mensagem por joaofonseca

Ter Nov 01, 2011 08:14
Cálculo: Limites, Derivadas e Integrais
-
- Funções impares- como provar
por Thayna Santos » Seg Mar 16, 2015 12:10
- 1 Respostas
- 1905 Exibições
- Última mensagem por adauto martins

Seg Mar 16, 2015 15:41
Funções
-
- [limites] provar que existe o limite
por heric » Qui Out 13, 2011 14:36
- 4 Respostas
- 3445 Exibições
- Última mensagem por LuizAquino

Seg Out 17, 2011 11:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.