por uchihacx » Qui Dez 17, 2015 00:23

(x^k - a^k ) = 0
-
uchihacx
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Dez 17, 2015 00:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: cursando
por e8group » Sex Dez 18, 2015 22:46
Se ,

é fácil verificar o resultado . No caso geral , em que k é um natural qualquer

,fatore x^k - a^k ( divida o polinômio x^k - a^k por x-a ) . Feito isto , vamos poder escrever x^k - a^k como (x-a) q(x) , onde q(x) é um polinômio de grau k-1 . Em seguida ,note o seguinte , ao trabalharmos com x próximo de a , podemos majorar |x| (e.g . por 1 + |a| ) , e consequentemente teremos |q(x)| < M (p algum M > 0 ) . Dai vem :
|x^k - a^k| = |x-a| |q(x)| < M |x-a|
O segundo membro da desigualdade acima pode ficar arbitrariamente pequeno o que estabilizara o resultado .
Note que neste fórum tal questão já foi resolvida , onde há uma discussão mais detalhada .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] como essa divisão foi simplificada?
por GandalfOAzul » Sáb Set 14, 2019 01:21
- 5 Respostas
- 10145 Exibições
- Última mensagem por GandalfOAzul

Qua Set 18, 2019 12:01
Cálculo: Limites, Derivadas e Integrais
-
- Provar - Limites
por Cleyson007 » Sáb Abr 28, 2012 17:11
- 1 Respostas
- 1181 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 15:42
Cálculo: Limites, Derivadas e Integrais
-
- Limite Notável-Como provar?
por joaofonseca » Dom Out 30, 2011 20:19
- 4 Respostas
- 3830 Exibições
- Última mensagem por joaofonseca

Ter Nov 01, 2011 08:14
Cálculo: Limites, Derivadas e Integrais
-
- Funções impares- como provar
por Thayna Santos » Seg Mar 16, 2015 12:10
- 1 Respostas
- 1792 Exibições
- Última mensagem por adauto martins

Seg Mar 16, 2015 15:41
Funções
-
- [limites] provar que existe o limite
por heric » Qui Out 13, 2011 14:36
- 4 Respostas
- 3274 Exibições
- Última mensagem por LuizAquino

Seg Out 17, 2011 11:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.