por Cleyson007 » Dom Mai 31, 2015 00:37
Vou te dar uma ajuda no primeiro anexo.
a)

Tente resolver sozinho. Se caso surgir alguma dúvida me comunique.
b) Use a mesma regra que utilizei para resolver a letra "a" deste exercício. Dá uma olhada sobre a Regra do Quociente. No numerador você terá também de usar a Regra do Produto. Surgindo dúvida é só me comunicar.
c) Efetue a multiplicação antes de resolver. Em outras palavras, derive essa função:
f(z) = z + e^z - z*e^z - e^(2z).
Bons estudos
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por johnatta » Dom Mai 31, 2015 16:27
Amigo, você ajudou bastante. Mas ,na verdade, eu quero ter a certeza da resposta. Então, se possível, por favor, resolva por completo ? Grato !
-
johnatta
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Ter Abr 07, 2015 17:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 10374 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Ajuda com calculo de derivada
por alienpuke » Sáb Out 24, 2015 15:45
- 2 Respostas
- 4121 Exibições
- Última mensagem por Cleyson007

Sáb Out 24, 2015 16:12
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] derivada
por beel » Dom Set 25, 2011 13:04
- 2 Respostas
- 3830 Exibições
- Última mensagem por beel

Dom Set 25, 2011 16:22
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] derivada de log
por beel » Sáb Out 15, 2011 22:42
- 4 Respostas
- 4587 Exibições
- Última mensagem por beel

Ter Out 18, 2011 13:16
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] derivada de log 2
por beel » Dom Out 16, 2011 01:10
- 2 Respostas
- 4219 Exibições
- Última mensagem por Fabio Cabral

Ter Out 18, 2011 13:47
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.