• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Derivada da função

[Derivadas] Derivada da função

Mensagempor neoreload » Sáb Nov 01, 2014 08:25

Pessoal como resolver essa:

Encontre a derivada da função f(x)=3cos^{2}(e^{-x})

Eu até achava fácil, porém ao tentar fazer com a formula U^{p}\rightarrow PU^{p-1}.U^{'} o resultado que eu chego é bem diferente da resposta que tem na apostila(resposta em anexo). Se possível deixar bem detalhado o passo a passo para que eu possa entender onde que estou errando, obrigado ^^

Resposta: f^{'}(x)=-6e^{-x}cos(e^{-x})sen(e^{-x})
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Sáb Nov 01, 2014 12:06

você tem que aplicar a regra da cadeia mais de uma vez

f(x)=3cos^2(e^{-x})

f'(x)=3.2cos(e^{-x}).(cos(e^{-x}))'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(e^{-x})'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(-e^{-x})

f'(x)=6.e^{-x}cos(e^{-x}).sen(e^{-x})
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas] Derivada da função

Mensagempor neoreload » Sáb Nov 01, 2014 17:48

young_jedi escreveu:você tem que aplicar a regra da cadeia mais de uma vez

f(x)=3cos^2(e^{-x})

f'(x)=3.2cos(e^{-x}).(cos(e^{-x}))'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(e^{-x})'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(-e^{-x})

f'(x)=6.e^{-x}cos(e^{-x}).sen(e^{-x})



Entendo, mas pq nesse caso em especifico eu preciso usar duas vezes ?
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Dom Nov 02, 2014 09:28

é porque você tem a função

e^{-x}

dentro da função

cos(e^{-x})

e a função

cos(e^{-x})

dentro da função

cos^2(e^{-x})
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas] Derivada da função

Mensagempor neoreload » Dom Nov 02, 2014 10:14

young_jedi escreveu:é porque você tem a função

e^{-x}

dentro da função

cos(e^{-x})

e a função

cos(e^{-x})

dentro da função

cos^2(e^{-x})


Muito obrigado amigo, agora entendi ^^. Só uma coisa, então o gabarito está errado não é? pois lá tem o 6 como -6 no final. Obrigado mais uma vez ^^
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Dom Nov 02, 2014 10:29

É verdade, mas o sinal de menos acho que é um erro de gabarito mesmo.

Valeu !
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?