• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício com Teorema de Bolzano

Exercício com Teorema de Bolzano

Mensagempor fff » Qua Fev 05, 2014 11:54

Bom dia, tenho dúvidas neste exercício que é para resolver com o Teorema de Bolzano:
Sejam f e g duas funções contínuas com domínio [a,b]. Sabe-se que f(a)<g(a) e f(b)>g(b). Prova, por via analítica que os gráficos de f e g se intersetam.
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: Exercício com Teorema de Bolzano

Mensagempor e8group » Qua Fev 05, 2014 15:26

Dica :

Defina h = f - g . Mostre que h é contínua e que h(a) \cdot h(b) < 0 e com isso conclua que existe c \in [a,b] de modo que g(c) = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Exercício com Teorema de Bolzano

Mensagempor fff » Qua Fev 05, 2014 16:57

Eu fiz assim:
h(x)=f(x)-g(x)
h(a)=f(a)-g(a)\rightarrow h(a)<0 porque f(a)<g(a).
h(b)=f(b)-g(b)\rightarrow h(b)>0 porque f(b)>g(b).
Como h é contínua (pois é a diferença de 2 funções contínuas) e h(a)*h(b)<0, o corolário do Teorema de Bolzano permite afirmar que :
Existe x\epsilon]a,b[:h(x)=0. Então o gráfico de f e g intersetam-se.
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: Exercício com Teorema de Bolzano

Mensagempor e8group » Qui Fev 06, 2014 11:17

Está correto sua solução .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Exercício com Teorema de Bolzano

Mensagempor fff » Qui Fev 06, 2014 17:19

Obrigada pela ajuda :)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.