• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por partes - dúvida

Integral por partes - dúvida

Mensagempor Danilo » Dom Nov 24, 2013 18:20

Resolver \int_{}^{}{x}^{3}{e}^{-{x}^{2}}dx

eu fiz até

\int_{}^{}{x}^{3}{e}^{-{x}^{2}}dx

u = {x}^{3},

 v = \int_{e}^{-{x}^{2}}dx \Rightarrow v = ?

eu não sei como encontrar v. Tentei fazer por substituição pois tem uma função composta. Chamei u = -{x}^{2} mas eu não consegui fazer a substituição. Eu gostaria de resolver apenas dessa maneira, se eu puder... pois não adianta eu resolver de outro jeito se eu travei nessa última integral. Alguma luz? Grato desde já :)
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral por partes - dúvida

Mensagempor e8group » Dom Nov 24, 2013 20:10

Tome u= -x^2 ,derivando-se : -du/2 = xdx .

A nova integral fica

-1/2  \int u \cdot e^{u}  du .

Agora tente por partes .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral por partes - dúvida

Mensagempor Danilo » Dom Nov 24, 2013 22:04

santhiago escreveu:Tome u= -x^2 ,derivando-se : -du/2 = xdx .

A nova integral fica

-1/2  \int u \cdot e^{u}  du .

Agora tente por partes .


Santhiago, com a sua substuição deu certinho mas eu não consegui visualizar como vc substituiu! -\frac{du}{2} = xdx e não dx (corrreto?). Por isso eu não consigo substituir (se eu não estiver errado) aí eu travo!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral por partes - dúvida

Mensagempor e8group » Seg Nov 25, 2013 11:24

OK . Primeiro pense : Qual a relação entre -x^2 e x^3 ? Para responder esta pergunta , basta notar que x^3 = (-1)(-1)x \cdot x^2 = [(-1)x] (-x^2) .

Além disso, se u = -x^2 entãodu = [-x^2]' dx = (-2)x dx e assim \frac{du}{2} = (-1)x dx . Agora note que ,

x^3 e^{-x^2} dx = [(-1)x] (-x^2) e^{(-x^2)} dx = (-x^2) \cdot e^{(-x^2)} [(-1)xdx] .

A expressão entre () pode ser substituída por u ,já a expressão entre [] pode ser substituída por \frac{du}{2} . Deste modo ,

\int x^3 e^{-x^2} dx  =  \int u \cdot e^{u} \frac{du}{2} = \frac{1}{2} \int u e^u du .

Peço desculpa ,no primeiro post errei contas . De qualquer forma espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.