• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivadas] - dúvida: função quociente entre seno e arcotang

[derivadas] - dúvida: função quociente entre seno e arcotang

Mensagempor EnGENheiro_nota10 » Qui Set 26, 2013 21:22

Ola, sou novo aqui e gostaria de postar uma dúvida que não encontrei:
in: Guidorizzi, L.H - Derivadas; cap.7, pág.223, exercício 8.3, item 1:

y= sen(3x)/arc tang(4x)

Tentei fazer pela regra do quociente e por substituição de variável porém não consegui.
Podem me ajudar?
EnGENheiro_nota10
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Set 26, 2013 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [derivadas] - dúvida: função quociente entre seno e arco

Mensagempor Taka » Dom Nov 03, 2013 08:38

Nesse exercício deve-se usar a regra do quociente combinada com a regra da cadeia, se você não viu a regra da cadeia não irá conseguir fazer essa questão
Taka
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Nov 02, 2013 16:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Química
Andamento: cursando

Re: [derivadas] - dúvida: função quociente entre seno e arco

Mensagempor Taka » Dom Nov 03, 2013 08:49

Nesse exercício deve-se usar a regra do quociente combinada com a regra da cadeia, se você não viu a regra da cadeia não irá conseguir fazer essa questão.

Mas, mesmo assim, ai vai minha resolução
\frac{d\frac{sen(3x)}{arctg(4x)}}{dx} =
= \frac{\frac{d(sen(3x))}{dx}arctg(4x)-\frac{d(arctg(4x))}{dx}sen(3x)}{{arctg(4x)}^{2}}
= \frac{3cos(3x)arctg(4x)-\frac{4sen(3x)}{1+16{x}^{2}}}{{arctg(4x)}^{2}}
Taka
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Nov 02, 2013 16:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Química
Andamento: cursando

Re: [derivadas] - dúvida: função quociente entre seno e arco

Mensagempor EnGENheiro_nota10 » Dom Nov 03, 2013 11:17

Sim, consegui resolver com a ajuda do plantonista.Ele fez exatamente isso.
Então, é isso o que eu tentei fazer, regra da cadeia, que é substituição de variável (+ou- né? Enfim).
O que ficou confuso foi como derivar o que estava dentro e o que estava fora. *-)
Mas muito obrigado!
EnGENheiro_nota10
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Set 26, 2013 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.