por EnGENheiro_nota10 » Qui Set 26, 2013 21:22
Ola, sou novo aqui e gostaria de postar uma dúvida que não encontrei:
in: Guidorizzi, L.H - Derivadas; cap.7, pág.223, exercício 8.3, item 1:
y= sen(3x)/arc tang(4x)
Tentei fazer pela regra do quociente e por substituição de variável porém não consegui.
Podem me ajudar?
-
EnGENheiro_nota10
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Set 26, 2013 20:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Taka » Dom Nov 03, 2013 08:38
Nesse exercício deve-se usar a regra do quociente combinada com a regra da cadeia, se você não viu a regra da cadeia não irá conseguir fazer essa questão
-
Taka
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sáb Nov 02, 2013 16:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Química
- Andamento: cursando
por Taka » Dom Nov 03, 2013 08:49
Nesse exercício deve-se usar a regra do quociente combinada com a regra da cadeia, se você não viu a regra da cadeia não irá conseguir fazer essa questão.
Mas, mesmo assim, ai vai minha resolução

=
=
=

-
Taka
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sáb Nov 02, 2013 16:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Química
- Andamento: cursando
por EnGENheiro_nota10 » Dom Nov 03, 2013 11:17
Sim, consegui resolver com a ajuda do plantonista.Ele fez exatamente isso.
Então, é isso o que eu tentei fazer, regra da cadeia, que é substituição de variável (+ou- né? Enfim).
O que ficou confuso foi como derivar o que estava dentro e o que estava fora.
Mas muito obrigado!
-
EnGENheiro_nota10
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Set 26, 2013 20:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida para achar quociente das diferenças da função
por gabrielajax » Qui Mar 19, 2015 12:11
- 2 Respostas
- 12684 Exibições
- Última mensagem por gabrielajax

Sex Mar 20, 2015 10:42
Funções
-
- [Limite trigonométrico] Razão entre tangente e seno.
por Matheus Lacombe O » Dom Out 28, 2012 17:13
- 3 Respostas
- 2356 Exibições
- Última mensagem por MarceloFantini

Dom Out 28, 2012 21:53
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas parciais com neperiano e seno.
por iksin » Qui Set 20, 2018 14:20
- 1 Respostas
- 5475 Exibições
- Última mensagem por Gebe

Qui Set 20, 2018 14:39
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADAS] Dúvida em exercício com Função Logaritimica
por dehcalegari » Sex Jun 07, 2013 10:52
- 0 Respostas
- 808 Exibições
- Última mensagem por dehcalegari

Sex Jun 07, 2013 10:52
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida com derivada do quociente
por arnoanderson » Seg Nov 02, 2009 12:08
- 2 Respostas
- 3470 Exibições
- Última mensagem por arnoanderson

Ter Nov 03, 2009 09:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.