• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Limite notável

[Limite] Limite notável

Mensagempor Nicolas1Lane » Sáb Set 28, 2013 13:13

Questão: \lim_{x\to \ 2} \frac{sen(x)-sen(2)}{x-2}

Eu tenho dúvida quanto a simplificação para o -lim sen(2), neste limite.
Pensei inicialmente que havia obtido o valor correto para as operações, mas percebi que estava enganado quanto a simplificação de -sen(2), então queria simplesmente que me dissessem o caminho para poder realizar esta simplificação.
Quando estava a resolver anteriormente já havia incluído o uso de uma variável y de modo que y=x-2 tal que x=y+2 e logo
\lim_{y\to \ 0} \frac{sen(y+2)-sen(2)}{y}

A resposta dada para a questão segundo a lista é cos(2).
Obrigado pelo seu tempo.
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando

Re: [Limite] Limite notável

Mensagempor Russman » Sáb Set 28, 2013 16:24

Este limite remete a definição de derivada. Lembre-se que a derivada da função seno é a cosseno.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Limite] Limite notável

Mensagempor Nicolas1Lane » Sáb Set 28, 2013 17:01

Bom, problemático.... eu não vi ainda derivação.
Valeu.
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando

Re: [Limite] Limite notável

Mensagempor young_jedi » Sáb Set 28, 2013 18:08

\lim_{x\to2}\frac{\sin(x)-\sin(2)}{x-2}

\lim_{x\to2}\frac{\sin(x-2+2)-\sin(2)}{x-2}

\lim_{x\to2}\frac{\cos(x-2)\sin(2)+\sin(x-2)\cos(2)-\sin(2)}{x-2}

\lim_{x\to2}\frac{(\cos(x-2)-1)\sin(2)}{x-2}+\frac{\sin(x-2)}{x-2}\cos(2)

\lim_{x\to2}\frac{\cos(x-2)+1}{\cos(x-2)+1}\frac{(\cos(x-2)-1)\sin(2)}{x-2}+\frac{\sin(x-2)}{x-2}\cos(2)

\lim_{x\to2}\frac{1}{\cos(x-2)+1}.\frac{(\cos^2(x-2)-1)\sin(2)}{x-2}+\frac{\sin(x-2)}{x-2}\cos(2)

\lim_{x\to2}\frac{1}{\cos(x-2)+1}.\frac{(-\sin^2(x-2))\sin(2)}{x-2}+\frac{\sin(x-2)}{x-2}\cos(2)

\lim_{x\to2}\frac{-\sin(x-2)}{\cos(x-2)+1}.\frac{\sin(x-2)\sin(2)}{x-2}+\frac{\sin(x-2)}{x-2}\cos(2)=\frac{-0.1.\sin(2)}{1+1}+1.\cos(2)=\cos(2)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite] Limite notável

Mensagempor Nicolas1Lane » Sáb Set 28, 2013 18:22

Muito obrigado.
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}