por pires_ » Seg Mai 20, 2013 18:42
Calcule o integral duplo ??e^x³ dA na região R definida por ?y ? x ? 1 e 0 ? y ? 1.
-
pires_
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Dom Dez 09, 2012 16:17
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: ciências e tecnologia
- Andamento: cursando
por young_jedi » Ter Mai 21, 2013 18:20
analiando o intervalo de integração podemos perceber que é possível mudar a ordem de integração sendo que esta área também pode ser reprsentada por


então a integral ficaria

tente concluir e comente as duvidas
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por pires_ » Qua Mai 22, 2013 17:34
Como é a primitiva de e^x^3 ?
-
pires_
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Dom Dez 09, 2012 16:17
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: ciências e tecnologia
- Andamento: cursando
por young_jedi » Qua Mai 22, 2013 18:56
faça a integral primeiro em y e depois em x fica mais fácil
se não entender comente..
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por pires_ » Qua Mai 22, 2013 20:35
Depois fico com o integral de e^x^3 . x^2 em ordem a x , certo ? Depois não sei o que fazer ...
-
pires_
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Dom Dez 09, 2012 16:17
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: ciências e tecnologia
- Andamento: cursando
por young_jedi » Qua Mai 22, 2013 21:02
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por pires_ » Qui Mai 23, 2013 12:11
o x^2 desaparece ?
-
pires_
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Dom Dez 09, 2012 16:17
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: ciências e tecnologia
- Andamento: cursando
por young_jedi » Qui Mai 23, 2013 16:50
não é que ele desaprarece, você substitui ele

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- arco duplo
por MERLAYNE » Qua Abr 04, 2012 19:52
- 1 Respostas
- 2399 Exibições
- Última mensagem por MarceloFantini

Qua Abr 04, 2012 23:57
Trigonometria
-
- [Arco Duplo]Cos(2a)
por Giudav » Sáb Set 15, 2012 12:48
- 2 Respostas
- 1789 Exibições
- Última mensagem por DanielFerreira

Sáb Set 15, 2012 22:38
Trigonometria
-
- Radical Duplo
por Rafael16 » Seg Jan 21, 2013 20:40
- 2 Respostas
- 3634 Exibições
- Última mensagem por Rafael16

Seg Jan 21, 2013 20:53
Aritmética
-
- Radical duplo
por Maria Livia » Sex Fev 22, 2013 00:10
- 1 Respostas
- 14184 Exibições
- Última mensagem por DanielFerreira

Sex Fev 22, 2013 01:11
Álgebra Elementar
-
- Simplificação do Seno e Cosseno do Arco Duplo
por vittor » Seg Fev 21, 2011 19:01
- 1 Respostas
- 4011 Exibições
- Última mensagem por Molina

Seg Fev 21, 2011 19:16
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.