• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação entre funções com derivadas iguais

Relação entre funções com derivadas iguais

Mensagempor matmatco » Sex Abr 12, 2013 23:00

Tentei substituir na soma esses dados mas é errado eu fazer isso, não estou sabendo como resolver

Sejam f(t),g(t) h(t) funções deriváveis em R e tais que para todo t,

f '(t)=g(t)
g'(t)= -f(t) - h(t)
h'(t)=g(t)
suponha que f(0)=g(0)=h(0)=1. prove que para todo t, [f(t)]²+[g(t)]²+h[(t)]²=3
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Relação entre funções com derivadas iguais

Mensagempor young_jedi » Sáb Abr 13, 2013 15:17

derivando a segunda equação nos temos

g''(t)=-f'(t)-h'(t)

substittuindo as outras duas equações nos temos

g''(t)=-g(t)-g(t)

g''(t)+2.g(t)=0

este é uma equação diferencial de segunda ordem resolvendo ela se encontra g(t) e depois h(t) e f(t)
comente qualquer coisa
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Relação entre funções com derivadas iguais

Mensagempor matmatco » Sáb Abr 13, 2013 16:06

ok, mas para encontrar o g(t) vou ter que jogar valores para g(t)? é isso? e depois derivar para encontrar o g"(t)?
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Relação entre funções com derivadas iguais

Mensagempor young_jedi » Sáb Abr 13, 2013 16:32

esta equação diferencial de segunda ordem tem como resposta algo do tipo

g(t)=A.sen(wt)+B.cos(wt)

ao substituindo isto na equação diferencial, voce vai determinar o valor de w, e depois com g(0)=1 voce determina os valores de A e B e as funções h(t) e f(t)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Relação entre funções com derivadas iguais

Mensagempor matmatco » Sáb Abr 13, 2013 22:51

estou com dificuldade em colocar os calculos então vou deixar os valores que encontrei depois com mais calma e se eu conseguir coloco a resolução.
resolvendo encontrei w= \sqrt[]{2}, usando g(0) achei A= 0 e B=1.Com isso encontro g(t)=1.
Depois usando a equação g`(t)= -f(t)-h(t) e usando g'(t)=Asen(wt)w-Bcos(wt)w que é a derivada da equação que você disse, acho
g'(t)=0.
com isso substituindo na equação g'(t)= -f(t)-h(t)
f(t)=1 e assim encontro que h(t) = 1 portanto f(t)²+g(t)²+h(t)²= 1²+1²+1²= 3.

meus calculos estão certos?
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Relação entre funções com derivadas iguais

Mensagempor young_jedi » Dom Abr 14, 2013 11:23

realmente w=\sqrt2 estea certo

mais substitutindo na equação g(0)=1 voce tem

g(0)=A.sen(\sqrt2.0)+Bcos(\sqrt2.0)

B=1

sendo assim voce consguiu determinar somente o B e não o A

agora utilizando a relação f'(t)=g(t) temos

f'(t)=A.sen(\sqrt2.t)+cos(\sqrt2.t)

f(t)=-A\frac{cos(\sqrt2t)}{\sqrt2}+\frac{sen(\sqrt2t)}{\sqrt2}+C

e como h'(t)=g(t)

h(t)=-A\frac{cos(\sqrt2t)}{\sqrt2}+\frac{sen(\sqrt2t)}{\sqrt2}+k

como f(0)=h(0)=1 temos

f(0)=-A\frac{cos(\sqrt2.0)}{\sqrt2}+\frac{sen(\sqrt2.0)}{\sqrt2}+C

1=-A\frac{1}{\sqrt2}+C

h(0)=-A\frac{cos(\sqrt2.0)}{\sqrt2}+\frac{sen(\sqrt2.0)}{\sqrt2}+k

1=-A\frac{1}{\sqrt2}+k

como g'(t)=-h(t)-f(t)

então

A\sqrt2cos(\sqrt2.t)-\sqrt2sen(\sqrt2.t)=A\frac{cos(\sqrt2t)}{\sqrt2}-\frac{sen(\sqrt2t)}{\sqrt2}-k+A\frac{cos(\sqrt2t)}{\sqrt2}-\frac{sen(\sqrt2t)}{\sqrt2}-C

A\sqrt2cos(\sqrt2.t)-\sqrt2sen(\sqrt2.t)=A\sqrt2{cos(\sqrt2t)-\sqrt2sen(\sqrt2t)-k-C

então temos que k+C=0

mais das relações anteriores tinhamos que

1=-A\frac{1}{\sqrt2}+C

1+\frac{A}{\sqrt2}=C
e

1=-A\frac{1}{\sqrt2}+k

1+\frac{A}{\sqrt2}=k

1+\frac{A}{\sqrt2}+1+\frac{A}{\sqrt2}=0

A=-\sqrt2

e dai tirmaos que C=K=0

portanto as tres equações serão

g(t)=-\sqrt2.sen(\sqrt2.t)+cos(\sqrt2.t)

h(t)=cos(\sqrt2t)+\frac{sen(\sqrt2t)}{\sqrt2}

f(t)=cos(\sqrt2t)+\frac{sen(\sqrt2t)}{\sqrt2}

elevando cada uma destas funções ao quadrado e somando o resultado sera 3
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Relação entre funções com derivadas iguais

Mensagempor matmatco » Dom Abr 14, 2013 13:19

entendi, mas não sabia que ia ter que integrar o f ' (t) para achar o valor de A e sobre as constantes eu já não poderia elimina-las sem ter que encontrar seus valores?
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Relação entre funções com derivadas iguais

Mensagempor young_jedi » Dom Abr 14, 2013 15:24

voce não pode eliminar as constantes direto, neste caso elas eram iguais a zero, mais em outros casos pode ser que não
então voce tem que encontra-las, e a constante A é a mesma coisa voce tem que integrar f'(t) e h'(t) e utilizar a relação
g(0)=g(0)=h(0)=1 para determina-la.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Relação entre funções com derivadas iguais

Mensagempor matmatco » Dom Abr 14, 2013 19:52

ok, muito obrigado
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: