• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação entre funções com derivadas iguais

Relação entre funções com derivadas iguais

Mensagempor matmatco » Sex Abr 12, 2013 23:00

Tentei substituir na soma esses dados mas é errado eu fazer isso, não estou sabendo como resolver

Sejam f(t),g(t) h(t) funções deriváveis em R e tais que para todo t,

f '(t)=g(t)
g'(t)= -f(t) - h(t)
h'(t)=g(t)
suponha que f(0)=g(0)=h(0)=1. prove que para todo t, [f(t)]²+[g(t)]²+h[(t)]²=3
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Relação entre funções com derivadas iguais

Mensagempor young_jedi » Sáb Abr 13, 2013 15:17

derivando a segunda equação nos temos

g''(t)=-f'(t)-h'(t)

substittuindo as outras duas equações nos temos

g''(t)=-g(t)-g(t)

g''(t)+2.g(t)=0

este é uma equação diferencial de segunda ordem resolvendo ela se encontra g(t) e depois h(t) e f(t)
comente qualquer coisa
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Relação entre funções com derivadas iguais

Mensagempor matmatco » Sáb Abr 13, 2013 16:06

ok, mas para encontrar o g(t) vou ter que jogar valores para g(t)? é isso? e depois derivar para encontrar o g"(t)?
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Relação entre funções com derivadas iguais

Mensagempor young_jedi » Sáb Abr 13, 2013 16:32

esta equação diferencial de segunda ordem tem como resposta algo do tipo

g(t)=A.sen(wt)+B.cos(wt)

ao substituindo isto na equação diferencial, voce vai determinar o valor de w, e depois com g(0)=1 voce determina os valores de A e B e as funções h(t) e f(t)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Relação entre funções com derivadas iguais

Mensagempor matmatco » Sáb Abr 13, 2013 22:51

estou com dificuldade em colocar os calculos então vou deixar os valores que encontrei depois com mais calma e se eu conseguir coloco a resolução.
resolvendo encontrei w= \sqrt[]{2}, usando g(0) achei A= 0 e B=1.Com isso encontro g(t)=1.
Depois usando a equação g`(t)= -f(t)-h(t) e usando g'(t)=Asen(wt)w-Bcos(wt)w que é a derivada da equação que você disse, acho
g'(t)=0.
com isso substituindo na equação g'(t)= -f(t)-h(t)
f(t)=1 e assim encontro que h(t) = 1 portanto f(t)²+g(t)²+h(t)²= 1²+1²+1²= 3.

meus calculos estão certos?
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Relação entre funções com derivadas iguais

Mensagempor young_jedi » Dom Abr 14, 2013 11:23

realmente w=\sqrt2 estea certo

mais substitutindo na equação g(0)=1 voce tem

g(0)=A.sen(\sqrt2.0)+Bcos(\sqrt2.0)

B=1

sendo assim voce consguiu determinar somente o B e não o A

agora utilizando a relação f'(t)=g(t) temos

f'(t)=A.sen(\sqrt2.t)+cos(\sqrt2.t)

f(t)=-A\frac{cos(\sqrt2t)}{\sqrt2}+\frac{sen(\sqrt2t)}{\sqrt2}+C

e como h'(t)=g(t)

h(t)=-A\frac{cos(\sqrt2t)}{\sqrt2}+\frac{sen(\sqrt2t)}{\sqrt2}+k

como f(0)=h(0)=1 temos

f(0)=-A\frac{cos(\sqrt2.0)}{\sqrt2}+\frac{sen(\sqrt2.0)}{\sqrt2}+C

1=-A\frac{1}{\sqrt2}+C

h(0)=-A\frac{cos(\sqrt2.0)}{\sqrt2}+\frac{sen(\sqrt2.0)}{\sqrt2}+k

1=-A\frac{1}{\sqrt2}+k

como g'(t)=-h(t)-f(t)

então

A\sqrt2cos(\sqrt2.t)-\sqrt2sen(\sqrt2.t)=A\frac{cos(\sqrt2t)}{\sqrt2}-\frac{sen(\sqrt2t)}{\sqrt2}-k+A\frac{cos(\sqrt2t)}{\sqrt2}-\frac{sen(\sqrt2t)}{\sqrt2}-C

A\sqrt2cos(\sqrt2.t)-\sqrt2sen(\sqrt2.t)=A\sqrt2{cos(\sqrt2t)-\sqrt2sen(\sqrt2t)-k-C

então temos que k+C=0

mais das relações anteriores tinhamos que

1=-A\frac{1}{\sqrt2}+C

1+\frac{A}{\sqrt2}=C
e

1=-A\frac{1}{\sqrt2}+k

1+\frac{A}{\sqrt2}=k

1+\frac{A}{\sqrt2}+1+\frac{A}{\sqrt2}=0

A=-\sqrt2

e dai tirmaos que C=K=0

portanto as tres equações serão

g(t)=-\sqrt2.sen(\sqrt2.t)+cos(\sqrt2.t)

h(t)=cos(\sqrt2t)+\frac{sen(\sqrt2t)}{\sqrt2}

f(t)=cos(\sqrt2t)+\frac{sen(\sqrt2t)}{\sqrt2}

elevando cada uma destas funções ao quadrado e somando o resultado sera 3
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Relação entre funções com derivadas iguais

Mensagempor matmatco » Dom Abr 14, 2013 13:19

entendi, mas não sabia que ia ter que integrar o f ' (t) para achar o valor de A e sobre as constantes eu já não poderia elimina-las sem ter que encontrar seus valores?
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Relação entre funções com derivadas iguais

Mensagempor young_jedi » Dom Abr 14, 2013 15:24

voce não pode eliminar as constantes direto, neste caso elas eram iguais a zero, mais em outros casos pode ser que não
então voce tem que encontra-las, e a constante A é a mesma coisa voce tem que integrar f'(t) e h'(t) e utilizar a relação
g(0)=g(0)=h(0)=1 para determina-la.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Relação entre funções com derivadas iguais

Mensagempor matmatco » Dom Abr 14, 2013 19:52

ok, muito obrigado
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.