por Fabricio dalla » Sex Mar 29, 2013 20:30
![\int_{0}^{\sqrt[2]{3}}arctg(\frac{1}{x})dx \int_{0}^{\sqrt[2]{3}}arctg(\frac{1}{x})dx](/latexrender/pictures/ffac9ea0931e3ae66b1dbd114c8ab7ed.png)
Não sei como começar
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por marinalcd » Sex Mar 29, 2013 21:52
Fabricio dalla escreveu:![\int_{0}^{\sqrt[2]{3}}arctg(\frac{1}{x})dx \int_{0}^{\sqrt[2]{3}}arctg(\frac{1}{x})dx](/latexrender/pictures/ffac9ea0931e3ae66b1dbd114c8ab7ed.png)
Não sei como começar
Esta integral não é muito complicada nem muito extensa.
Basta você realizar uma substituição simples.
A derivada de arctg 1/x é fácil, né?
Ao fazer a substituição, você pode tratar como uma integral indefinida, assim você não precisa mudar os limites de integração. Aí no final, quando você voltar à variável do problema, você substitui os limites. Ou então, logo após fazer a substituição simples, você muda o intervalo de integração.
Tente fazer!
Qualquer dúvida poste aqui!
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Fabricio dalla » Sex Mar 29, 2013 23:08
pois é cara eu começo a desenvolver o problema nem é a integral que vem depois mas sim a parte

que com o intervalo dado dá arctg(1/0) ai n existe...
eu fiz isso que vc falou na integral
![\int_{0}^{\sqrt[2]{3}}\frac{{x}^{3}}{{x}^{2}+1}
com u={x}^{2}+1 \int_{0}^{\sqrt[2]{3}}\frac{{x}^{3}}{{x}^{2}+1}
com u={x}^{2}+1](/latexrender/pictures/70ee05c7274ca9632f3116e72f092b53.png)
mas n resolve o problema...
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.