por Fabricio dalla » Sex Mar 29, 2013 20:30
![\int_{0}^{\sqrt[2]{3}}arctg(\frac{1}{x})dx \int_{0}^{\sqrt[2]{3}}arctg(\frac{1}{x})dx](/latexrender/pictures/ffac9ea0931e3ae66b1dbd114c8ab7ed.png)
Não sei como começar
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por marinalcd » Sex Mar 29, 2013 21:52
Fabricio dalla escreveu:![\int_{0}^{\sqrt[2]{3}}arctg(\frac{1}{x})dx \int_{0}^{\sqrt[2]{3}}arctg(\frac{1}{x})dx](/latexrender/pictures/ffac9ea0931e3ae66b1dbd114c8ab7ed.png)
Não sei como começar
Esta integral não é muito complicada nem muito extensa.
Basta você realizar uma substituição simples.
A derivada de arctg 1/x é fácil, né?
Ao fazer a substituição, você pode tratar como uma integral indefinida, assim você não precisa mudar os limites de integração. Aí no final, quando você voltar à variável do problema, você substitui os limites. Ou então, logo após fazer a substituição simples, você muda o intervalo de integração.
Tente fazer!
Qualquer dúvida poste aqui!
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Fabricio dalla » Sex Mar 29, 2013 23:08
pois é cara eu começo a desenvolver o problema nem é a integral que vem depois mas sim a parte

que com o intervalo dado dá arctg(1/0) ai n existe...
eu fiz isso que vc falou na integral
![\int_{0}^{\sqrt[2]{3}}\frac{{x}^{3}}{{x}^{2}+1}
com u={x}^{2}+1 \int_{0}^{\sqrt[2]{3}}\frac{{x}^{3}}{{x}^{2}+1}
com u={x}^{2}+1](/latexrender/pictures/70ee05c7274ca9632f3116e72f092b53.png)
mas n resolve o problema...
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.