• Anúncio Global
    Respostas
    Exibições
    Última mensagem

duvida[integral trigonometrica]

duvida[integral trigonometrica]

Mensagempor Fabricio dalla » Sex Mar 29, 2013 20:30

\int_{0}^{\sqrt[2]{3}}arctg(\frac{1}{x})dx


Não sei como começar
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: duvida[integral trigonometrica]

Mensagempor marinalcd » Sex Mar 29, 2013 21:52

Fabricio dalla escreveu:\int_{0}^{\sqrt[2]{3}}arctg(\frac{1}{x})dx


Não sei como começar


Esta integral não é muito complicada nem muito extensa.
Basta você realizar uma substituição simples.

A derivada de arctg 1/x é fácil, né?

Ao fazer a substituição, você pode tratar como uma integral indefinida, assim você não precisa mudar os limites de integração. Aí no final, quando você voltar à variável do problema, você substitui os limites. Ou então, logo após fazer a substituição simples, você muda o intervalo de integração.

Tente fazer!
Qualquer dúvida poste aqui!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: duvida[integral trigonometrica]

Mensagempor Fabricio dalla » Sex Mar 29, 2013 23:08

pois é cara eu começo a desenvolver o problema nem é a integral que vem depois mas sim a parte arctg(\frac{1}{x})x que com o intervalo dado dá arctg(1/0) ai n existe...


eu fiz isso que vc falou na integral\int_{0}^{\sqrt[2]{3}}\frac{{x}^{3}}{{x}^{2}+1}   

com u={x}^{2}+1 mas n resolve o problema...
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: