• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas Parciais e Multiplicadores de Lagrange]

[Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 20:02

Boa noite. Não estou conseguindo resolver este problema envolvendo Multiplicadores de Lagrange:

5. O lucro mensal total de uma empresa obtido na produção e venda de x centenas de termostatos mecânicos e y unidades de termostatos eletrônicos é dado pela função:

P(x,y) = -\frac{1}{8}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280

onde P é o lucro em centenas de reais. Se a produção dos termostatos está condicionada a um total de 4000 unidades por mês, quantas unidades de cada modelo a empresa deveria fabricar para obter o maior lucro possível? Qual é o máximo lucro mensal? (R: R$ 52.600,00) Segundo a professora a resposta para o máximo lucro mensal é R$ 52.600,00

Vejam minhas contas:

F(x,g,\lambda)=P(x,y)-\lambda[g(x,y)]

g(x,y)=x+y-4000

F(x,y,\lambda)=-\frac{1}{8}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280-\lambda(x+y-4000)

Fx=0
[tex]Fy=0
[tex]F\lambda=0

[tex]\frac{\alpha(F)}{\alpha(x)}=0
\frac{\alpha(F)}{\alpha(y)}=0
\frac{\alpha(F)}{\alpha(\lambda)}=0

As derivadas parciais ficam assim:

Fx=-\frac{1}{4}x-\frac{1}{4}y+13-\lambda=0
Fy=-y-\frac{1}{4}x+40-\lambda=0
F\lambda=-(x+y-4000)=0

Resolvendo o sistema pra achar x e y:

-\frac{1}{4}x-\frac{1}{4}y+13=-y-\frac{1}{4}x+40

y-\frac{1}{4}y=40-13

\frac{3}{4}y=27, y=\frac{27.4}{3}

y=36

x+y=4000, x=4000-36,...

x=3964

Substituindo x e y na função lucro P(x,y)=-\frac{1}{4}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280

Temos: P(3964;36)=-1.947794,00

MUITO DIFERENTE DO RESULTADO ACHADO PELA PROFESSORA: R$ 52.600,00

Poderiam me ajudar em ver onde errei? Por favor?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 20:04

Saiu errado a fórmula do lucro!

A correta é esta aqui:

P(x,y)=-\frac{1}{8}x²-\frac{1}{2}y²-\frac{1}{4}xy+13x+40y-280
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 20:07

A fórmula do lucro é esta:

P(x,y) = -1/8x² - 1/2y² - 1/4xy + 13x + 40y - 280

Não sei por que está aparecendo ess "A" angulo na minha equação!
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor young_jedi » Sáb Dez 15, 2012 20:59

veja que no enunciado ele diz:

5. O lucro mensal total de uma empresa obtido na produção e venda de x centenas de termostatos mecânicos e y unidades de termostatos eletrônicos é dado pela função:

então quando ele diz que o total de unidades é 4000 voce tem

100.x+y=4000

tente fazer com esta equação e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 21:03

Então a equação fica: x+y=40

Bem que eu suspeitava, pois fazendo x=4 e y=36, dá o resultado correto que a professora falou! Obrigado pela ajuda!
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 21:04

Fiz pelo Wolfram e deu esse resultado mesmo
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor Ronaldobb » Sáb Dez 15, 2012 21:06

100.x+y=4000 = x+y=\frac{4000}{100} = x+y=40

Está correta esta conta?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Derivadas Parciais e Multiplicadores de Lagrange]

Mensagempor young_jedi » Dom Dez 16, 2012 12:45

não

100x+y=4000

x+\frac{y}{100}=40

a sua função g(x,y) sera

g(x,y)=1000x+y-4000
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}