por MrJuniorFerr » Dom Out 28, 2012 16:18
Estou com dúvida no seguinte exercício:

É possível fazer pelo método de substituição?
Tentei da seguinte forma:


Mas não tem como fazer o

virar

porque eu teria que colocar valores de x dentro da integral...
Como resolvê-lo?
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por MarceloFantini » Dom Out 28, 2012 17:03
Não está errado. Note que se

, então

, portanto

. Daí você terá

.
Esta é simples de resolver.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Dom Out 28, 2012 17:26
Não, você esqueceu de multiplicar por

. Expanda

, multiplique e aí sim terá a integral de um polinômio.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Dom Out 28, 2012 17:54
Sim, está correto.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Dom Out 28, 2012 18:38
Vá no Wolfram, digite
![Expand[d] Expand[d]](/latexrender/pictures/b8db264886a2782a327db2a821d51817.png)
, onde

é a expressão que encontrou. Verá que são iguais, ao expandir o resultado do Wolfram também.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integrais] Dúvida exercício
por MrJuniorFerr » Dom Nov 11, 2012 10:51
- 5 Respostas
- 3225 Exibições
- Última mensagem por DanielFerreira

Dom Nov 11, 2012 13:25
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Duvida em exercicio.
por Akyel » Qui Jun 18, 2015 14:57
- 1 Respostas
- 3024 Exibições
- Última mensagem por adauto martins

Sáb Jun 20, 2015 21:01
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Exercício - resolução falha
por MrJuniorFerr » Seg Out 29, 2012 00:23
- 5 Respostas
- 2752 Exibições
- Última mensagem por MrJuniorFerr

Seg Out 29, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [integrais duplas] Exercício livro diomara
por gustavoluiss » Qui Jan 16, 2014 22:37
- 2 Respostas
- 2232 Exibições
- Última mensagem por Guilherme Pimentel

Sex Jan 17, 2014 03:01
Cálculo: Limites, Derivadas e Integrais
-
- Duvida com Integrais
por MarceloRocks » Seg Dez 03, 2012 00:48
- 3 Respostas
- 3884 Exibições
- Última mensagem por MarceloFantini

Seg Dez 03, 2012 19:43
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.