por iceman » Ter Set 18, 2012 18:08
Seja

Calcule:

-
iceman
- Usuário Parceiro

-
- Mensagens: 70
- Registrado em: Qui Mai 10, 2012 18:35
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Renato_RJ » Ter Set 18, 2012 18:19
Campeão, a derivada da soma é a soma das derivadas...
Então, se temos:

Agora é aplicar x = -5 na segunda derivada....
[ ]'s
Renato
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por iceman » Ter Set 18, 2012 18:21
Renato_RJ escreveu:Campeão, a derivada da soma é a soma das derivadas...
Então, se temos:

Agora é aplicar x = -5 na segunda derivada....
[ ]'s
Renato
Aqui ficou assim, pode conferiri se está certo? :
56250+(-1200)+4
56250-1200 --> A resposta para aquii? Abraço.
-
iceman
- Usuário Parceiro

-
- Mensagens: 70
- Registrado em: Qui Mai 10, 2012 18:35
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Renato_RJ » Ter Set 18, 2012 18:41
Fazendo as contas (e se tudo estiver certinho) o resultado é 57454..

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por iceman » Ter Set 18, 2012 18:58
Beleza, entendi. Valeu mesmo!

-
iceman
- Usuário Parceiro

-
- Mensagens: 70
- Registrado em: Qui Mai 10, 2012 18:35
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 12550 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Ajuda com calculo de derivada
por alienpuke » Sáb Out 24, 2015 15:45
- 2 Respostas
- 6978 Exibições
- Última mensagem por Cleyson007

Sáb Out 24, 2015 16:12
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda em Derivada
por vinim » Qua Jun 02, 2010 21:20
- 1 Respostas
- 1325 Exibições
- Última mensagem por MarceloFantini

Qui Jun 03, 2010 03:46
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda Derivada.
por jhonniewalk » Qui Mai 24, 2012 16:49
- 5 Respostas
- 2616 Exibições
- Última mensagem por DanielFerreira

Qui Mai 31, 2012 22:26
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Ajuda
por Bruna Cintra » Ter Mai 29, 2012 10:44
- 1 Respostas
- 1199 Exibições
- Última mensagem por Jhonata

Ter Mai 29, 2012 11:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.